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This is a post of my notes reviewing linear algebra, aggregating information mainly from the linear algebra review and reference section
notes from theStanfordCS229Machine Learning course andChapter 2 of theDeep LearningBook. Inmany (most) places, thematerial
is directly transcribed from these sources. Rewriting it in LaTEX just helps me to slow down and better understand the content. The
notes are not comprehensive, they contain the things that weren’t immediately obvious to me (though this turns out to be most of the
material).

2.1 vector-vector products

inner (dot) product

Given x, y ∈ Rn, xT y ∈ R is the inner product, aka dot product .

xT y ∈ R =
[
x1 x2 · · · xn

]


y1
y2
...

yn

 =
n∑

i=1
xiyi

=
[
y1 y2 · · · yn

]


x1
x2
...

xn


= yT x

1

http://cs229.stanford.edu/section/cs229-linalg.pdf
http://cs229.stanford.edu/section/cs229-linalg.pdf
http://www.deeplearningbook.org/


Therefore, xT y = yT x is always true.

outer product

Given x ∈ Rm, y ∈ Rn, xyT ∈ Rm×n is the outer product .

xyT ∈ Rm×n =


x1
x2
...

xm

 [y1 y2 · · · yn

]
=


x1y1 x1y2 · · · x1yn

x2y1 x2y2 · · · x2yn

...
...

. . .
...

xmy1 xmy2 · · · xmyn


TheCS229 notes give an example of how the outer product with a vector of ones1 ∈ Rn can be used to give a compact representation
of a matrix A ∈ Rm×n whose columns are all equal to a vector x ∈ Rm:

A =

 | | |
x x · · · x
| | |

 =


x1 x1 · · · x1
x2 x2 · · · x2
...

...
. . .

...
xm xm · · · xm

 =


x1
x2
...

xm

 [1 1 · · · 1
]

= x1T

The Deep Learning Book section 2.1 describes the use of an unconventional notation called broadcasting where the addition of a
matrix and a vector to yield another matrix is allowed: C = A + b, where Ci,j = Ai,j + bj . (C ∈ Rm×n, A ∈ Rm×n, b ∈ Rn)
Explicitly writing this out:

C =


A1,1 A1,2 · · · A1,n

A2,1 A2,2 · · · A2,n

...
...

. . .
...

Am,1 Am,2 · · · Am,n

+


b1
b2
...

bn

 =


A1,1 + b1 A1,2 + b2 · · · A1,n + bn

A2,1 + b1 A2,2 + b2 · · · A2,n + bn

...
...

. . .
...

Am,1 + b1 Am,2 + b2 · · · Am,n + bn



= A +


b1 b2 · · · bn

b1 b2 · · · bn

...
...

. . .
...

b1 b2 · · · bn


= A + (b1T )T

= A + 1bT

So, the shorthand C = A + b can be written more explicitly (but still pretty compactly) as C = A + 1bT , where 1 ∈ Rm

2.2 matrix-vector products

Given a matrix A ∈ Rm×n and a vector x ∈ Rn, their product is a vector y = Ax ∈ Rm. The CS229 notes go through some
different representations of the product:

representing A as rows

y = Ax =


− aT

1 −
− aT

2 −
...

− aT
m −

x =


aT

1 x
aT

2 x
...

aT
mx
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That is, the ith entry of y is the inner product of the ith row of A and x, yi = aT
i x.

Recalling that the inner product is a similarity measure, y can be interpreted as a list of how similar each row of A is to x. This is

illustrated below, with the rows of the matrix A =
[

6 0
−3 4

]
in black and the vector x =

[
5
1

]
in red.

−2 0 2 4 6

0
2

4

Here y = Ax =
[

30
−11

]
, reflecting the fact that x =

[
5
1

]
is more similar to a1 =

[
6
0

]
than it is to a2 =

[
−3
4

]

representing A as columns

y = Ax =

 | | |
a1 a2 · · · an

| | |




x1
x2
...

xn

 =

 |
a1
|

x1 +

 |
a2
|

x2 + · · · +

 |
an

|

xn

That is, y is a linear combination of the columns of A, where the coefficients of the linear combination are the entries of x.

This is illustrated below, with the matrix A =
[

4 1
−2 2

]
and x =

[
3

−2

]
.
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0 2 4 6 8 10 12

−
10

−
8

−
6

−
4

−
2

0

Here y = Ax =
[

10
−10

]
=
[

4
−2

]
(3) +

[
1
2

]
(−2), representing the point in Rm reached after taking x1 = 3 “steps” of

a1 =
[

4
−2

]
drawn as black vectors plus x2 = −2 “steps” of a2 =

[
1
2

]
drawn as red vectors.

Analogous cases occur in the left multiplication of a matrix by a row vector, yT = xT A for A ∈ Rm×n, x ∈ Rm, and y ∈ Rn.

yT = xT A = xT

 | | |
a1 a2 · · · an

| | |

 =
[
xT a1 xT a2 · · · xT an

]
Showing that the ith entry of yT is the inner product of x and the ith column of A.

yT = xT A

=
[
x1 x2 · · · xn

]


− aT
1 −

− aT
2 −
...

− aT
m −


= x1

[
− aT

1 −
]

+ x2
[
− aT

2 −
]

+ · · · + xn

[
− aT

n −
]

So yT is a linear combination of the rows of A, where the coefficients of the linear combination are given by the entries of x.

2.3 matrix-matrix products

The product of two matrices A ∈ Rm×n and B ∈ Rn×p is the matrix

C = AB ∈ Rm×p,

where

Ci,j =
n∑

k=1

Ai,kBk,j

This is not the same as amatrix containing the product of individual elements. That is the element-wise, orHadamard product, denoted
A ⊙ B.

The CS229 notes go through four different ways of viewing matrix multiplication.
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First, matrix-matrix multiplication as a set of vector-vector products, whereA is represented by rows andB is represented by columns.
This is the way that matrix multiplication is usually taught.

C = AB =


− aT

1 −
− aT

2 −
...

− aT
m −


 | | |

b1 b2 · · · bp

| | |

 =


aT

1 b1 aT
1 b2 · · · aT

1 bp

aT
2 b1 aT

2 b2 · · · aT
2 bp

...
...

. . .
...

aT
mb1 aT

mb2 · · · aT
mbp


Next, representing A by columns and B by rows:

C = AB =

 | | |
a1 a2 · · · ap

| | |




− bT
1 −

− bT
2 −
...

− bT
m −

 =
n∑

i=1
aib

T
i

This representation is not as intuitive. Conceptually, it calculating the matrix by summing together n matrices where each entry is the
ith element of the sum in each element of C . This is in contrast to the canonical representation above, in which you go element by
element in C and calculate the entire sum for each element individually.

Matrix-matrix multiplication can also be represented as a set of matrix-vector products. Representing B by columns:

C = AB = A

 | | |
b1 b2 · · · bp

| | |

 =

 | | |
Ab1 Ab2 · · · Abp

| | |


Each column in C can then be interpreted as in section 2.2 on matrix-vector products.

Representing A by rows:

C = AB =


− aT

1 −
− aT

2 −
...

− aT
m −

B =


− aT

1 B −
− aT

2 B −
...

− aT
mB −


3.2 the transpose

Some properties:

• (AB)T = BT AT

This property, along with the fact that a scalar is equal to its own transpose, can be used to show that the dot product is commutative:

xT y = (xT y)T = yT x

• (A + B)T = AT + BT

3.3 symmetric matrices

A square matrix A ∈ Rn×n is symmetric if A = AT . It is anti-symmetric if A = −AT .
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For any matrix A ∈ Rn×n, the matrix A + AT is symmetric:

A + AT =


A1,1 A1,2 · · · A1,n

A2,1 A2,2 · · · A2,n

...
...

. . .
...

An,1 An,2 · · · An,n

+


A1,1 A2,1 · · · An,1
A1,2 A2,2 · · · An,2
...

...
. . .

...
A1,n A2,n · · · An,n



=


2A1,1 A1,2 + A2,1 · · · A1,n + An,1

A2,1 + A1,2 2A2,2 · · · A2,n + An,2
...

...
. . .

...
An,1 + A1,n An,2 + A2,n · · · 2An,n


, which is symmetric due to commutativity of addition.

Similarly, the matrix A − AT is anti-symmetric.

From these properties, it follows that any square matrix A ∈ Rn×n can be represented as a sum of a symmetric matrix and an
anti-symmetric matrix:

A = 1
2
(
A + AT

)
+ 1

2
(
A − AT

)
Symmetric matrices have nice properties and occur often, particularly when they are generated by a function of two arguments that
does not depend on the order of the arguments (e.g. a distance measure between two points). The set of all symmetric matrices of
size n can be denoted as Sn.

3.4 the trace

The trace of a square matrix A ∈ Rn×n, denoted tr(A) or trA, is the sum of diagonal elements n the matrix:

trA =
n∑

i=1
Ai,i

For A, B, C such that ABC is square, trABC = trBCA = trCAB, and so on for the product of more matrices. This holds even
if the resulting products have different dimensions.

3.5 norms

A norm of a vector ||x|| is an informal measure of the length or size of a vector. The Lp (also written as ℓp) norm is parameterized by
p and defined as:

∥x∥p =

(
n∑

i=1
|xi|p

)1/p

The L2 norm, aka the Euclidean norm, is commonly used and represents the Euclidean distance from the origin to the point identified
by x:

∥x∥2 =

√√√√ n∑
i=1

x2
i

Note that the squared L2 norm ∥x∥2
2 = xT x. The squared L2 norm is more convenient to work with mathematically and computa-

tionally than the L2 norm itself.
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TheL2 norm increases slowly near the origin. When it is important to discriminate between elements that are exactly zero and elements
that are small but non-zero, the L1 norm is often used because it increases at the same rate in all locations:

∥x∥1 =
n∑

i=1
|xi|

Another norm is the L∞ norm, aka the max norm. This represents the absolute value of the element with the largest magnitude in the
vector:

∥x∥∞ = max
i

|xi|

Norms can also be defined for matrices. In machine learning, the Frobenius norm is often used:

∥A∥F =

√√√√ m∑
i=1

n∑
j=1

A2
i,j =

√
tr(AT A)

3.6 linear independence and rank

A set of vectors {x1, x2, . . . , xn} ⊂ Rm is linearly independent if no vector can be represented as a linear combination of the
remaining vectors. That is, if

xn =
n−1∑
i=1

αixi

for some scalar values α1, . . . , αn−1 ∈ R, then the vectors x1, . . . , xn are linearly dependent; otherwise, the vectors are linearly
independent.

The column rank of a matrix A ∈ Rm×n is the size of the largest subset of columns of A that constitute a linearly independent set.
This often refers simply to the number of linearly independent columns of A. Similarly, the row rank is the largest number of rows of
A that constitute a linearly independent set. It turns out that for any matrix A ∈ Rm×n, the column rank of A is equal to the row rank
of A, and are referred to as the rank of A, rank(A).

Some properties of the rank:

• For A ∈ Rm×n, rank(A) ≤ min(m, n). If rank(A) = min(m, n), then A is said to be full rank .
• For A ∈ Rm×n, rank(A) = rank(AT ).
• For A ∈ Rm×n, B ∈ Rn×p, rank(AB) ≤ min(rank(A), rank(B)).
• For A, B ∈ Rm×n, rank(A + B) ≤ rank(A) + rank(B).

3.7 the inverse

The inverse of a square matrix A ∈ Rn×n is denoted A−1, and is the unique matrix such that

A−1A = I = AA−1

Not all matrices have inverses. For example, non-square matrices by definition do not have inverses. A square matrix A is invertible
or non-singular if A−1 exists and non-invertible or singular otherwise.

In order for a square matrix A to have an inverse A−1, then A must be full rank. There are many alternative sufficient and necessary
conditions in addition to this for invertibility.

Some properties of the inverse for non-singular matrices A, B ∈ Rn×n:

• (A−1)−1 = A
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• (AB)−1 = B−1A−1

• (A−1)T = (AT )−1. This matrix is often denoted A−T .

When A−1 exists, there are several algorithms for finding its closed form. However, because computers can only represent it with
limited precision, A−1 should not actually be used in practice for most software.

3.8 orthogonal matrices

Two vectors x, y ∈ Rn are orthogonal if xT y = 0 (thinking geometrically, remember that the dot product= ∥x∥∥y∥ cos θ, where
θ is the angle between the two vectors). A vector x ∈ Rn is normalized if ∥x∥2 = 1.

A square matrix U ∈ Rn×n is orthogonal if all its columns are orthonormal each other, i.e. the columns are orthogonal to each
other and normalized. Using the definitions of orthogonality and normality,

UT U =


− uT

1 −
− uT

2 −
...

− uT
n −


 | | |

u1 u2 · · · un

| | |



=


uT

1 u1 uT
1 u2 · · · uT

1 un

uT
2 u1 uT

2 u2 · · · uT
2 un

...
...

. . .
...

uT
n b1 uT

n u2 · · · uT
mun



=


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


= I

Similarly, I = UUT , so
UT U = I = UUT

That is, the inverse of an orthogonal matrix is its transpose. Orthogonal matrices are thus useful, since computing the transpose of a
matrix is much cheaper than computing its inverse. Note that the columns of an orthogonal matrix must be orthogonal and normalized.
There is no special term for a matrix whose columns are orthogonal but not normal.

A nice property of orthogonal matrices is that operating on a vector with an orthogonal matrix will not change its Euclidean norm, i.e.,

∥Ux∥2 = ∥x∥2

for any x ∈ Rn, U ∈ Rn×n orthogonal.

3.9 range and nullspace of a matrix

The span of a set of vectors {x1, . . . , xn} is the set of all vectors that can be expressed as a linear combination of {x1, . . . , xn}.
That is,

span({x1, . . . , xn}) =

{
v : v =

n∑
i=1

αixi, αi ∈ R

}
.

If {x1, . . . , xn} is a set of n linearly independent vectors, where each xi ∈ Rn, then span({x1, . . . , xn}) = Rn. In other words,
any vector v ∈ Rn can be written as a linear combination of x1 through xn.
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The projection of a vector y ∈ Rm onto the span of {x1, . . . , xn} (assuming xi ∈ Rm) is the vector v ∈ span({x1, . . . , xn})
such thatv is as close as possible toy, asmeasured by theEuclidean norm∥v−y∥2. The projection is denotedProj(y; {x1, . . . , xn})
and is defined

Proj(y; {x1, . . . , xn}) = argminv∈span(x1,...,xn)∥y − v∥2

The range (aka the columnspace) of a matrix A ∈ Rm×n, denoted R(A), is the span of the columns of A. That is,

R(A) = {v ∈ Rm : v = Ax, x ∈ Rn}

Making a few technical assumptions (namely that A is full rank and that n < m), the projection of a vector y ∈ Rm onto the range
of A is given by

Proj(y; A) = argminv∈R(A)∥v − y∥2 = A(AT A)−1AT y

The nullspace of a matrix A ∈ Rm×n, denoted N (A), is the set of all vectors that equal 0 when multiplied by A, i.e.,

N (A) = {x ∈ Rn : Ax = 0}

3.10 the determinant

The determinant of a square matrix A ∈ Rn×n is a function det : Rn×n → R denoted |A| or detA. The CS229 notes begin with
a geometric interpretation of the determinant reproduced here.

Given a matrix 
− aT

1 −
− aT

2 −
...

− aT
n −

 ,

consider the set of points S ⊂ Rn formed by taking all possible linear combinations of the row vectors a1, . . . , an ∈ Rn of A,
where the coefficients of the linear combination are all between 0 and 1; that is, the set S is the restriction of span({a1, . . . , an}) to
only those linear combinations whose coefficients α1, . . . , αn satisfy 0 ≤ αi ≤ 1, i = 1, . . . , n. Formally,

S = {v ∈ Rn : v =
n∑

i=1
αiai where 0 ≤ αi ≤ 1, i = 1, . . . , n}

The absolute value of the determinant of A is a measure of the “volume” of the set S. It can also be thought of as a measure of how
much multiplication by the matrix expands or contracts space. If the determinant is 0, then space is contracted completely along at
least one dimension, causing it to lose all of its volume. If the determinant is 1, then the transformation is volume-preserving.

The notes then go through a graphical example of a 2 × 2 matrix, in which the set S has the shape of a parallelogram. In three
dimensions, S corresponds to a parallelepiped, and in n dimensions, S corresponds to an n-dimensional parallelotope.

Algebraically, the determinant satisfies the following three properties:

1. The determinant of the identity is 1, |I| = 1. (Geometrically, the volume of a unit hypercube is 1).

2. Given a matrix A ∈ Rn×n, if we multiply a single row in A by a scalar t ∈ R, then the determinant of the new matrix is t|A|,∣∣∣∣∣∣∣∣∣


− taT

1 −
− aT

2 −
...

− aT
n −


∣∣∣∣∣∣∣∣∣ = t|A|

(Geometrically, multiplying one of the sides of the set S by a factor t causes the volume to increase by a factor t.)
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3. If we exchange any two rows aT
i and aT

j of A, then the determinant of the new matrix is −|A|, for example∣∣∣∣∣∣∣∣∣


− aT

2 −
− aT

1 −
...

− aT
n −


∣∣∣∣∣∣∣∣∣ = −|A|

Several properties that follow from the three properties above include:

• For A ∈ Rn×n, |A| = |AT |.
• For A, B ∈ Rn×n, |AB| = |A||B|.
• For A ∈ Rn×n, |A| = 0 iff A is singular (i.e., non-invertible). (If A is singular then it does not have full rank, and hence its
columns are linearly dependent. In this case, the set S corresponds to a “flat sheet” within the n-dimensional space and hence
has zero volume.)

• For A ∈ Rn×n and A non-singular, |A−1| = 1/|A|.

In order to define the determinant, it is useful to define, for A ∈ Rn×n, the matrix A\i,\j ∈ R(n−1)×(n−1) to be the matrix that
results from deleting the ith row and the jth column from A. The determinant of this matrix is called the (i, j)minor of A, sometimes
denoted Mij (i.e. |A\i,\j | = Mij ). The general (recursive) formula for the determinant is

|A| =
n∑

i=1
(−1)i+jAij |A\i,\j | =

n∑
i=1

(−1)i+jAijMij (for any j ∈ 1, . . . , n)

=
n∑

j=1
(−1)i+jAij |A\i,\j | =

n∑
j=1

(−1)i+jAijMij (for any i ∈ 1, . . . , n)

with the initial case that |A| = A11 for A ∈ R1×1. The formula expanded completely for A ∈ Rn×n would have a total of n!
different terms, so it’s usually never written out explicitly.

The classical adjoint (aka the adjugate matrix) of a matrix A ∈ Rn×n, is denoted adj(A), and defined as

adj(A) ∈ Rn×n, (adj(A))ij = (−1)i+j |A\j,\i|
= (−1)i+jMji

Note the switch in the indices Mji. This is because the classical adjoint is the transpose of the cofactor matrix C ∈ Rn×n, Cij =
(−1)i+jMij .

For any nonsingular A ∈ Rn×n,
A−1 = 1

|A|
adj(A)

While this is a nice explicit formula for the matrix inverse, in practice there are more efficient ways of computing the inverse numerically.

3.11 quadratic forms and positive semidefinite matrices

Given a square matrix A ∈ Rn×n and a vector x ∈ Rn, the scalar value xT Ax is called a quadratic form. Written explicitly, we
see that

xT Ax =
n∑

i=1
xi(Ax)i =

n∑
i=1

xi

 n∑
j=1

Aijxj

 =
n∑

i=1

n∑
j=1

Aijxixj

Note that,

xT Ax = (xT Ax)T = xT AT x = xT

(
1
2

A + 1
2

AT

)
x,

where the first equality follows from the fact that the transpose of a scalar is equal to itself, and the third equality follows from the fact
that A = AT , so we are averaging two quantities which are themselves equal. From this, we can conclude that only the symmetric
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part of A contributes to the quadratic form (see section 3.3 on symmetric matrices). For this reason, we often implicitly assume that
the matrices appearing in a quadratic form are symmetric.

We (the CS229 notes, that is) give the following definitions:

• A symmetric matrix A ∈ Sn is positive definite (PD) if for all non-zero vectors x ∈ Rn, xT Ax > 0. This is usually denoted
A ≻ 0 (or just A > 0), and often times the set of all positive definite matrices is denoted Sn

++.
• A symmetric matrix A ∈ Sn is positive semidefinite (PSD) if for all vectors xT Ax ≥ 0. This is written A ⪰ 0 (or just

A ≥ 0), and the set of all positive semidefinite matrices is often denoted Sn
+.

• Likewise, a symmetric matrix A ∈ Sn is negative definite (ND), denoted A ≺ 0 (or just A < 0) if for all non-zero x ∈
Rn, xT Ax < 0.

• Similarly, a symmetric matrix A ∈ Sn is negative semidefinite (NSD), denoted A ⪯ 0 (or just A ≤ 0) if for all non-zero
x ∈ Rn, xT Ax ≤ 0.

• Finally, a symmetric matrix A ∈ Sn is indefinite if it neither positive semidefinite nor negative semidefinite – i.e., if there exists
x1, x2 ∈ Rn such that xT

1 Ax1 > 0 and xT
2 Ax2 < 0.

If A is positive definite, then −A is negative definite and vice versa. Likewise, if A is positive semidefinite, then −A is negative
semidefinite and vice versa. If A is indefinite, then so is −A.

One important property of positive definite and negative definite matrices is that they are always full rank, and hence, invertible. To
see why this is the case, suppose that some matrix A ∈ Rn×n is not full rank. Then, suppose that the jth column of A is expressible
as a linear combination of the other n − 1 columns:

aj =
∑
i ̸=j

xiai

for some x1, . . . , xj−1, xj+1, . . . , xn ∈ R. Setting xj = −1, we have

Ax =
n∑

i=1
xiai = 0

(If this is not immediately clear, write out the matrix-vector product explicitly, representing A as columns as in section 2.2). Ax = 0
implies that xT Ax = 0 for some non-zero vector x, so A must be neither positive definite nor negative definite. Therefore, if A is
either positive definite or negative definite, it must be full rank.

Finally, there is one type of positive definite matrix that comes up frequently, and so deserves some special attention. Given any matrix
A ∈ Rm×n (not necessarily symmetric or even square), the matrixG = AT A (sometimes called aGrammatrix) is always positive
semidefinite. Further, if m ≥ n (and we assume for convenience that A is full rank), then G = AT A is positive definite.

3.12 eigenvalues and eigenvectors

Given a square matrix A ∈ Rn×n, we say that λ ∈ C is an eigenvalue of A and x ∈ Cn is the corresponding eigenvector if

Ax = λx, x ̸= 0

This definition means that multiplying A by the vector x results in a new vector that points in the same direction as x, but scaled
by a factor λ. Also note that for any eigenvector x ∈ Cn and scalar t ∈ C, A(cx) = cAx = cλx = λ(cx), so cx is also
an eigenvector. For this reason, when we talk about “the” eigenvector associated with λ, we usually assume that the eigenvector is
normalized to have length 1 (this still leaves some ambiguity, since x and −x will both be eigenvectors, but we will live with this).

We can rewrite the equation above to state that (λ, x) is an eigenvalue-eigenvector pair of A if

(λI − A)x = 0, x ̸= 0

(λI − A)x − 0 has a non-zero solution to x iff (λI − A) has a non-empty nullspace, which is only the case if (λI − A) is singular,
i.e.,

|(λI − A)| = 0

11



This determinant is a (very large) polynomial in λ, where λ will have maximum degree n. The n (possibly complex) roots of this
polynomial are the eigenvalues λ1, . . . , λ2. To find the eigenvector corresponding to the eigenvalue λi , we solve the linaer equation
(λiI −A)x = 0. It should be noted that in practice this method is not used to numerically compute the eigenvalues and eigenvectors
(remember that the complete expansion of the determinant has n! terms).

The following are properties of eigenvalues and eigenvectors, in all cases assuming A ∈ Rn×n with eigenvalues λ1, . . . , λn and
associated eigenvectors x1, . . . , xn:

• The trace of A is equal to the sum of its eigenvalues:

trA =
n∑

i=1
λi

• The determinant of A is equal to the product of its eigenvalues:

|A| =
n∏

i=1
λi

• The rank of A is equal to the number of non-zero eigenvalues of A.
• If A is non-singular, then 1/λi is an eigenvalue of A−1 with associated eigenvector xi, i.e., A−1xi = (1/λi)xi. (To prove
this, left-multiply each side of the eigenvector equation Axi = λixi by A−1).

• The eigenvalues of a diagonal matrix D = diag(d1, . . . , dn) are just the diagonal entries d1, . . . , dn.

We can write all the eigenvector equations simultaneously as

AX = XΛ

where the columns of X ∈ Rn×n are the eigenvectors of A and Λ is a diagonal matrix whose entries are the eigenvalues of A, i.e.,

X ∈ Rn×n =

 | | |
x1 x2 · · · xn

| | |

 , Λ = diag(λ1, . . . , λn)

If the eigenvectors of A are linearly independent, then the matrix X will be invertible, so A = XΛX−1. A matrix that can be written
in this form is called diagonalizable.

3.13 eigenvalues and eigenvectors of symmetric matrices

The eigenvalues and eigenvectors of a symmetric matrix A ∈ Sn have two nice properties. First, it can be shown that all of the
eigenvalues ofA are real. Secondly, the eigenvectors ofA are orthonormal, i.e. the matrixX as defined above is an orthogonal matrix
(for this reason, we denote thematrix of eigenvectors asU in this case). We can therefore representA asA = UΛUT , remembering
that the inverse of an orthogonal matrix is just its transpose.

Using this, we can show that the definiteness of a matrix depends entirely on the sign of its eigenvalues. SupposeA ∈ Sn = UΛUT .
Then

xT Ax = xT UΛUT x = yT Λy =
n∑

i=1
λiy

2
i

where y = UT x (and since U is full rank, any vector y ∈ Rn can be represented in this form). Because y2
i is always positive,

the sign of this expression depends entirely on the λi’s. If all λi > 0, then the matrix is positive definite; if all λi ≥ 0, it is positive
semidefinite. Likewise, if all λi < 0 or λi ≤ 0, then A is negative definite or negative semidefinite, respectively. Finally, if A has
both positive and negative eigenvalues, it is indefinite.

An application where eigenvalues and eigenvectors come up frequently is in maximizing some function of a matrix. In particular, for a
matrix A ∈ Sn, consider the following maximization problem,

max
x∈Rn

xT Ax subject to ∥x∥2
2 = 1

12



i.e., we want to find the vector (of norm 1) which maximizes the quadratic form. Assuming the eigenvalues are ordered as λ1 ≥ λ2 ≥
· · · ≥ λn, the optimal x for this optimization problem is x1, the eigenvector corresponding to λ1. In this case the maximal value of
the quadratic form is λ1. Similarly, the optimal solution to the minimization problem,

min
x∈Rn

xT Ax subject to ∥x∥2
2 = 1

is xn, the eigenvector corresponding to λn, and the minimal value is λn. This can be proved by appealing to the eigenvector-
eigenvalue form of A and the properties of orthogonal matrices. However, in the next section we will see a way of showing it directly
using matrix calculus.

4.1 the gradient

Suppose that f : Rm×n → is a function that takes as input a matrix A of size m × n and returns a real value. Then the gradient
of f (with respect to A ∈ Rm×n) is the matrix of partial derivatives, defined as:

∇Af(A) ∈ Rm×n =


∂f(A)
∂A11

∂f(A)
∂A12

· · · ∂f(A)
∂A1n

∂f(A)
∂A21

∂f(A)
∂A22

· · · ∂f(A)
∂A2n

...
...

. . .
...

∂f(A)
∂Am1

∂f(A)
∂Am2

· · · ∂f(A)
∂Amn


i.e., an m × n matrix with

(∇Af(A))ij = ∂f(A)
∂Aij

Note that the size of ∇Af(A) is always the same as the size of A. So if, in particular, A is just a vector x ∈ Rn,

∇xf(x) =


∂f(x)
∂x1

∂f(x)
∂x2
...

∂f(x)
∂xn


It is very important to remember that the gradient of a function is only defined if the function is real-valued, that is, if it returns a scalar
value. We can not, for example, take the gradient of Ax, A ∈ Rn×n with respect to x, since this quantity is vector-valued.

It follows directly from the equivalent properties of partial derivatives that:

• ∇x(f(x) + g(x)) = ∇xf(x) + ∇xg(x)
• For t ∈ R, ∇x(tf(x)) = t∇xf(x)

In principle, gradients are a natural extension of partial derivatives to functions of multiple variables. In practice, however, working with
gradients can sometimes be tricky for notational reasons. For example, suppose that A ∈ Rm×n is a matrix of fixed coefficients and
suppose that x ∈ Rn (note: this is a typo in the original notes) is a vector of fixed coefficients. Let f : Rm → R be the function
defined by f(z) = zT z, such that ∇zf(z) = 2z. But now, consider the expression,

∇f(Ax)

How should this expression be interpreted? There are at least two possibilities:

1. In the first interpretation, recall that ∇f(z) = 2z. Here, we interpret ∇(Ax) as evaluating the gradient at the point Ax,
hence,

∇f(Ax) = 2(Ax) = 2Ax ∈ Rm

2. In the second interpretation, we consider the quantity f(Ax) as a function of the input variables x. More formally, let g(x) =
f(Ax). Then in this interpretation,

∇f(Ax) = ∇xg(x) ∈ Rn

Here, we can see that these two interpretations are indeed different. One interpretation yields an m-dimensional vector, while
the other interpretation yields an n-dimensional vector.

13



The key is to make explicit the variables which we are differentiating with respect to. In the first case, we are differentiating the function
f with respect to its arguments z and then substituting the argument Ax. In the second case, we are differentiating the composite
function g(x) = f(Ax) with respect to x directly. We denote the first case as ∇zf(Ax) and the second case as ∇xf(Ax).

4.2 the Hessian

Suppose that f : Rn → R is a function that takes a vector inRn and returns a real number. Then the Hessian matrix with respect
to x, written ∇2

xf(x) or simply as H is the n × n matrix of partial derivatives,

∇2
xf(x) ∈ Rn×n =


∂2f(x)

∂x2
1

∂2f(x)
∂x1∂x2

· · · ∂2f(x)
∂x1∂xn

∂2f(x)
∂x2∂x1

∂2f(x)
∂x2

2
· · · ∂2f(x)

∂x2∂xn

...
...

. . .
...

∂2f(x)
∂xn∂x1

∂2f(x)
∂xn∂x2

· · · ∂2f(x)
∂x2

n


In other words, ∇2

xf(x) ∈ Rn×n, with

(∇2
xf(x))ij = ∂2f(x)

∂xi∂xj

Note that the Hessian is always symmetric, since
∂2f(x)
∂xi∂xj

= ∂2f(x)
∂xj∂xi

Similar to the gradient, the Hessian is defined only when f(x) is real-valued.

It is natural to think of the gradient as the analogue of the first derivative for functions of vectors, and the Hessian as the analogue of
the second derivative. This intuition is generally correct, but there are a few caveats to keep in mind.

First, for real-valued functions of one variable f : R → R, it is a basic definition that the second derivative is the derivative of the first
derivative, i.e.,

∂2f(x)
∂x2 = ∂

∂x

∂

∂x
f(x)

However, for functions of a vector, the gradient of the function is a vector, and we cannot take the gradient of a vector – i.e.,

∇x∇xf(x) ̸= ∇x


∂f(x)
∂x1

∂f(x)
∂x2
...

∂f(x)
∂xn


as this expression is not defined. Therefore, it is not the case that the Hessian is the gradient of the gradient. However, this is almost
true, in the following sense: If we look at the ith entry of the gradient (∇xf(x))i = ∂f(x)/∂xi, and take the gradient with respect
to x we get

∇x
∂f(x)
∂xi

=


∂2f(x)
∂xi∂x1
∂2f(x)
∂xi∂x2

...
∂2f(x)
∂xi∂xn


which is the ith column (or row) of the Hessian. Therefore,

∇2
xf(x) =

[
∇x(∇xf(x))1 ∇x(∇xf(x))2 · · · ∇x(∇xf(x))n

]
If we don’t mind being a little bit sloppy we can say that (essentially) ∇2

xf(x) = ∇x(∇xf(x))T , as long as we understand that this
really means taking the gradient of each entry of (∇xf(x))T , not the gradient of the whole vector.
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4.3 gradients and hessians of linear and quadratic functions

Now let’s determine the gradient and Hessian matrices for a few simple functions.

For x ∈ Rn, let f(x) = bT x for some known vector b ∈ Rn. Then

f(x) =
n∑

i=1
bixi

so
∂f(x)
∂xk

= ∂

∂xk

n∑
i=1

bixi = bk

From this we see that ∇xbT x = b. This is analogous to the situation in single-variable calculus, where ∂
∂x ax = a.

Now consider the quadratic function f(x) = xT A for A ∈ Sn. Remember that

f(x) =
n∑

i=1

n∑
j=1

Aijxixj

(see section 3.11). To take the partial derivative, we’ll consider the terms including xk and x2
k factors separately:

∂f(x)
∂xk

= ∂

∂xk

n∑
i=1

n∑
j=1

Aijxixj

= ∂

∂xk

∑
i ̸=k

∑
j ̸=k

Aijxixj +
∑
i̸=k

Aikxixk +
∑
j ̸=k

Akjxkxj + Akkx2
k


=
∑
i̸=k

Aikxi +
∑
j ̸=k

Akjxj + 2Akkxk

=
n∑

i=1
Aikxi +

n∑
j=1

Akjxj

= 2
n∑

i=1
Akixi

where the last equality follows since A is symmetric (which we can safely assume, since it is appearing in a quadratic form). Note that
the kth entry of ∇xf(x) is just the inner product of the kth row of A and x. Therefore, ∇xxT Ax = 2Ax. Again, this is analogous
to single-variable calculus, where ∂

∂x ax2 = 2ax.

Finally, let’s look at the Hessian of the quadratic function f(x) = xT Ax (the Hessian of a linear function bT x is just zero). In this
case,

∂2f(x)
∂xk∂xl

= ∂

∂xk

[
∂f(x)
∂xl

]
= ∂

∂xk

[
2

n∑
i=1

Alixi

]
= 2Alk = 2Akl.

Therefore, ∇2
xxT Ax = 2A, which is again analogous to the single-variable case where ∂

∂x2 ax2 = 2a.

To recap,

• ∇xbT x = b
• ∇xxT Ax = 2Ax (if A symmetric)
• ∇2

xxT Ax = 2A (if A symmetric)
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4.5 gradients of the determinant

Let’s consider a situation where we want to find the gradient of a function with respect to a matrix, namely for A ∈ Rn×n, we want to
find ∇A|A|. Recall from our discussion of determinants (section 3.10) that

|A| =
n∑

i=1
(−1)i+jAij |A\i,\j | (for any j ∈ 1, . . . , n)

so
∂

∂Akl
|A| = ∂

∂Akl

n∑
i=1

(−1)i+jAij |A\i,\j | = (−1)k+l|A\k,\l| = (adj(A))lk

From this and the properties of the adjugate it follows that

∇A|A| = (adj(A))T = |A|A−T

Now let’s consider the function f : Sn
++ → R, f(A) = log |A|. Note that we restrict the domain of f to be the positive definite

matrices, since this ensures that |A| > 0, so that the log of |A| is a real number. In this case we can use the chain rule (from
single-variable calculus) to see that

∂ log |A|
∂Aij

= ∂ log |A|
∂|A|

∂|A|
∂Aij

= 1
|A|

∂|A|
∂Aij

So,
∇A log |A| = 1

|A|
∇A|A| = A−1

where we can drop the transpose in the last expression because A is symmetric. Note the similarity to the single-variable case, where
∂

∂x log x = 1
x .

4.6 eigenvalues as optimization

Finally, we usematrix calculus to solve an optimization problem in away that leads directly to eigenvalue/eigenvector analysis. Consider
the following equality constrained optimization problem:

max
x∈Rn

xT Ax subject to ∥x∥2
2 = 1

for a symmetricmatrixA ∈ Sn. A standardway of solving optimization problemswith equality constrains is by forming the Lagrangian,
an objective function that includes the equality constraints. The Lagrangian in this case is given by

L(x, λ) = xT Ax − λxT x

where λ is called the Lagrange multiplier associated wtih the equality constraint. It can be established that for x∗ to be an optimal
point to the problem, the gradient of the Lagrangian must be zero at x∗ (this is not the only condition, but it is required). That is,

∇xL(x, λ) = ∇x(xT Ax − λxT x) = 2Ax − 2λx = 0

Notice that this is just the linear eigenvalue equation Ax = λx. This shows that the only points which can possibly maximize (or
minimize) xT Ax assuming xT x = 1 are the eigenvectors or A.
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