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Ex. 2.1 Suppose each of K-classes has an associated target tk, which is a vector of all zeros, except for a one in the kth position.
Show that classifying to the largest element of ŷ amounts to choosing the closest target,mink∥tk − ŷ∥, if the elements of ŷ sum to
one.

The problem, restated: Show that argmin
k

∥tk − ŷ∥ = argmax
k

(yk) subject to :

argmin
k

∥tk − ŷ∥

= argmin
k

∥tk − ŷ∥2 x → x2 is monotonic

= argmin
k

k∑
i=1

(yi − (tk)i)2 definition of norm, ignoring√ due to argmin

= argmin
k

k∑
i=1

(
yi − 2yi(tk)i + (tk)2

i

)
= argmin

k

k∑
i=1

(
−2yi(tk)i + (tk)2

i

) k∑
i=1

y2
i is independent of k

= argmin
k

(−2yk + 1)
k∑

i=1
yi(tk)i = yk,

k∑
i=1

(tk)2
i = 1

= argmin
k

(−2yk)

= argmax
k

(yk)

Ex 2.2 Show how to compute the Bayes decision boundary for the simulation example in Figure 2.5.

The simulation draws 10 points p1, . . . , p10 ∈ R2 from N

([
1
0

]
, I2

)
and 10 points q1, . . . , q10 ∈ R2 from N

([
0
1

]
, I2

)
.

These points pi and qj we assume to be fixed, and are used as the means of normal distributions with covariance matrix I2/5. The
Bayes decision boundary is found by equating the likelihoods of a point being generated from the blue generating function and the
orange generating function:
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P (blue) = P (orange)∑
i

1√
|2πΣ|

exp
(

−1
2

(x − pi)T Σ−1(x − pi)
)

=
∑

j

1√
|2πΣ|

exp
(

−1
2

(x − qj)T Σ−1(x − qj)
)

∑
i

exp
(

−1
2

(x − pi)T Σ−1(x − pi)
)

=
∑

j

exp
(

−1
2

(x − qj)T Σ−1(x − qj)
)

∑
i

exp
(

−1
2

(x − pi)T

(
5
I2

)
(x − pi)

)
=
∑

j

exp
(

−1
2

(x − qj)T

(
5
I2

)
(x − qj)

)
∑

i

exp
(

−5∥pi − x∥2

2

)
=
∑

j

exp
(

−5∥qj − x∥2

2

)

Ex 2.3 Derive equation (2.24).

Equation 2.24: ConsiderN data points uniformly distributed in a p-dimensional unit ball centered at the origin. Suppose we consider
a nearest-neighbor estimate at the origin. The median distance from the origin to the closest data point is given by the expression

d(p, N) =

(
1 − 1

2

1
N

) 1
p

Let r = median distance.

1
2

= P (allN points are further than r from the origin) definition of the median

1
2

=
N∏

i=1
P (∥xi∥ > r) each point is assumed to be independent

1
2

=
N∏

i=1
[1 − P (∥xi∥ ≤ r)]

1
2

=
N∏

i=1

[
1 − Krp

K

]
volume of a p dimensional hypersphere w/ radius r

1
2

=
N∏

i=1
[1 − rp]

1
2

= (1 − rp)N

1 − rp =
(

1
2

) 1
N

rp = 1 −
(

1
2

) 1
N

r =

[
1 −

(
1
2

) 1
N

] 1
p

Ex 2.4 The edge effect problem discussed on page 23 is not peculiar to uniform sampling from bounded domains. Consider inputs
drawn from a spherical multinormal distributionX ∼ N(0, Ip). The squared distance from any sample point to the origin has a χ2

p

distribution with mean p. Consider a prediction point x0 drawn from this distribution, and let a = x0/∥x0∥ be an associated unit
vector. Let zi = aT xi be the projection of each of the training points on this direction.

Show that the zi are distributedN(0, 1)with expected squared distance from the origin 1, while the target point has expected squared
distance p from the origin.
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Hence for p = 10, a randomly drawn test point is about 3.1 standard deviations from the origin, while all the training points are on
average one standard deviation along direction a. So most prediction points see themselves as lying on the edge of the training set.
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