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My notes on The Elements of Statistical Learning Ch. 7 on Model Assessment and Selection

7.1 Introduction

• generalization performance of a learning method: its prediction capability on independent test data
• guides the choice of learning method or model
• a measure of the quality of the ultimately chosen model

7.2 Bias, Variance, and Model Complexity

• Consider the case of a quantitative or interval scale response with:
• target variable Y
• vectors of inputsX
• prediction model f̂(X) estimated from a training set τ
• a loss function for measuring errors between Y and f̂(X): L

(
Y, f̂(X)

)
• typical choices:

L
(

Y, f̂(X)
)

=


(

Y − f̂(X)
)2

squared error∣∣∣Y − f̂(X)
∣∣∣ absolute error

• test error , aka generalization error : the prediction error over an independent test sample

ErrT = E
[
L

(
Y, f̂(X)

)
| T

]
• X and Y drawn randomly from their joint distribution (population)
• here the training set τ is fixed, and the test error is for this specific training set

• expected prediction error , aka expected test error :

Err = E
[
L

(
Y, f̂(X)

)]
= E [ErrT ]

• expectation averages over everything that is random, including randomness in the training set that produced f̂
• goal: estimate Errτ . However, Err is more amenable to statistical analysis

• training error : the average loss over the training sample:

err = 1
N

n∑
i=1

L
(

yi, f̂(xi)
)
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• want to know the expected test error of the estimated model f̂
• a more complex model uses the training data more and is able to adapt to more complicated underlying structures

• hence, there is a decrease in bias but an increase in variance
• some intermediate model complexity will give minimum expected test error

• training error is not a good estimate of the test error
• training error consistently decreases with model complexity, and eventually drops to zero with enough complexity

• a model with zero training error is overfit to the training data and will typically generalize poorly
• Similarly, consider a qualitative or categorical response G taking one of K values in a set G, labeled for convenience as

1, 2, . . . , K
• typically, we model the probabilities pk(X) = Pr (G = k | X) (or some monotone transformations fk(X))
• then, classify by Ĝ(X) = arg maxk p̂k(X)

• in some cases (e.g. 1-nearest neighbor classification), Ĝ(X) is produced directly
• typical loss functions:

L
(

G, Ĝ(X)
)

= I
(

G ̸= Ĝ(X)
)

(0-1 loss)

L (G, p̂(X)) = −2
K∑

k=1

I (G = k) log p̂k(X)

= −2 log p̂G(X) (−2 × log-likelihood, aka the deviance)
• again, test error and the expected misclassification error:

ErrT = E
[
L

(
G, Ĝ(X)

)
| T

]
, Err = E [ErrT ]

• training error is the sample analogue, e.g.:

err = − 2
N

N∑
i=1

log p̂gi
(xi) sample log-likelihood for the model

• the log-likelihood can be used as a loss function for general response densities, e.g. Poisson, gamma, exponential, log-
normal and others

• if Prθ(X)(Y ) is the density of Y , indexed by a parameter θ(X) that depends on the predictorX , then

L (Y, θ(X)) = −2 · log Prθ(X) (Y )

• “−2” in the definition makes the log-likelihood loss for the Gaussian distribution match squared-error loss
• notation for the rest of the chapter:

• Y and f(X) represent all of the above situations, since the focus is mainly on the quantitative response (squared-error
loss) setting

• typically, a model will have tuning parameter(s) (hyperparameters) α, so predictions can be written f̂α(x)
• tuning parameter varies the complexity of the model
• want to find the value of α that minimizes error, i.e. produces the minimum of the average test error curve
• for brevity, the dependence of f̂(x) on α is often suppressed

• two separate goals:
• model selection: estimating the performance of different models in order to choose the best one
• model assessment : having chosen a final model, estimating its prediction error (generalization error) on new data
• in a data-rich situation, the best approach for both problems is to randomly divide dataset into training, validation, and
test sets

• training set is used to fit the models
• validation set used to estimate prediction error for model selection
• test set used for assessment of the generalization error of the final chosen model

• the test set should only be brought out at the end of the data analysis
• methods of this chapter either approximate the validation step analytically (AIC, BIC, MDL, SRM) or by efficient sample
re-use (cross-validation and the bootstrap)

• these methods are used in model selection and also provide an estimate of the test error of the final chosen model
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7.3 The Bias-Variance Decomposition

• Assumptions:
• Y = f(X) + ϵ

• E[ϵ] = 0
• Var(ϵ) = σ2

ϵ

• we can derive an expression for the expected prediction error of a regression fit f̂(X) at an input pointX = x0, using squared
error loss:

Err(x0)

= E
[(

Y − f̂(x0)
)2

| X = x0

]
= E

[(
f(X) + ϵ − f̂(x0)

)2
| X = x0

]
Y = f(X) + ϵ

= E
[((

f(X) − f̂(x0)
)

+ ϵ
)2

| X = x0

]
= E

[(
f(x0) − f̂(x0)

)2
+ 2ϵ

(
f(x0) − f̂(x0)

)
+ ϵ2

]
= E

[(
f(x0) − f̂(x0)

)2
]

+ 2E
[
ϵ

(
f(x0) − f̂(x0)

)]
+ E

[
ϵ2]

expectations are linear

= E
[(

f(x0) − Ef̂(x0) + Ef̂(x0) + f̂(x0)
)2

]
+ 2E [ϵ] E

[(
f(x0) − f̂(x0)

)]
+ E

[
(ϵ − E [ϵ])2

]
E[ϵ] = 0

= E
[(

f(x0) − Ef̂(x0)
)2

+ 2
(

f(x0) − Ef̂(x0)
) (

Ef̂(x0) − f̂(x0)
)

+
(
Ef̂(x0) − f̂(x0)

)2
]

+ 0 + σ2
ϵ E[ϵ] = 0 again

= E
[(

f(x0) − Ef̂(x0)
)2

]
+ 2E

[(
f(x0) − Ef̂(x0)

) (
Ef̂(x0) − f̂(x0)

)]
+ E

[(
Ef̂(x0) − f̂(x0)

)2
]

+ σ2
ϵ expectations are linear

= Bias2
(

f̂(x0)
)

+ Var
(

f̂(x0)
)

+ σ2
ϵ E

[
Ef̂(x0) − f̂(x0) | X = x0

]
= 0

= Bias2 + Variance+ Irreducible Error

• squared bias: the amount by which the average of the estimate differs from the true mean
• variance: the expected squared deviation of f̂(x0) around its mean
• irreducible error : variance of the target around its true mean f(x0)

• cannot be avoided no matter how well we estimate f(x0), unless σ2
ϵ = 0

• typically, the more complex a model f̂ , the lower the (squared) bias but the higher the variance
• for k-nearest-neighbor regression fit, the error has the simple form:

Err(x0) = E
[(

Y − f̂k(x0)
)2

| X = x0

]

= σ2
ϵ +

[
f(x0) − 1

k

k∑
ℓ=1

f
(
x(ℓ)

)]2

+ σ2
ϵ

k

• here we assume that the training inputs xi are fixed, and the randomness arises from the yi

• the number of neighbors k is inversely related to the model complexity:
• for small k, the estimate f̂k(x) can potentially adapt itself better to the underlying f(x)
• as k is increased, the bias – the squared difference between f(x0) and the average of f(x) at the k-nearest
neighbors – will typically increase, while the variance decreases

• for a linear model fit f̂p(x) = xT β̂, where the parameter p-vector β is fit by least squares:
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Err(x0) = E
[(

Y − f̂p (x0)
)2

| X = x0

]
= σ2

ϵ +
[
f (x0) − Ef̂p(x0)

]2
+ ∥h(x0)∥2

σ2
ϵ

h(x0) = X
(
XT X

)−1
x0, theN -vector of linear weights producing the fit:

f̂p(x0) = xT
0

(
XT X

)−1 XT y, hence,

Var
[
f̂p (x0)

]
= ∥h (x0)∥2

σ2
ϵ

• while this variance changes with x0, its average (with x0 taken to be each of the sample values xi) is
(

p
N

)
σ2

ϵ , hence the
in-sample error is:

1
N

n∑
i=1

Err(xi) = σ2
ϵ + 1

N

N∑
i=1

[
f (xi) − Ef̂ (xi)

]2
+ p

N
σ2

ϵ

• here, model complexity is directly related to the number of parameters p
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