
Elements of statistical learning Ch. 4 notes
James Chuang

February 3, 2017

Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
4.2 Linear Regression of an Indicator Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
4.3 Linear Discriminant Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
4.4 Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
4.5 Separating Hyperplanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.1 Introduction

Linear methods of classification– those where the decision boundaries between classes are linear.

Several different ways to find linear decision boundaries:

• fit a linear regression model to the class indicator variables, and classify to the largest fit (Ch. 2)
• Suppose there are K classes, labeled 1, 2, . . . , K , and the fitted linear model for the kth indicator response variable is

f̂k(x) = β̂k0 + β̂T
k x. The decision boundary between class k and l is that set of points for which f̂k(x) = f̂ℓ(x).

• This regression approach is a member of a class of methods that model discriminant functions δk(x) for each class,
and then classify x to the class with the largest value for its discriminant function.
• Methods that model the posterior probabilities P (G = k | X = x) are also in this class. If either the δk(x) or

P (G = k | X = x) are linear in x, then the decision boundaries will be linear.
• This remains true for monotone transformations of δk(x) or P (G = k | X = x). For example, in two-class

classification, a popular model for the posterior probabilities is

P (G = 1 | X = x) =
exp

(
β0 + βT x

)
1 + exp (β0 + βT x)

,

P (G = 2 | X = x) = 1
1 + exp (β0 + βT x)

• The monotone transformation used here is the logit transformation: log
[

p
1−p

]
(the inverse of the logistic

sigmoid function)

log P (G = 1 | X = x)
P (G = 2 | X = x)

= β0 + βT x

. Here the decision boundary is the set of points for which the log-odds are zero.
• Two popular but different methods resulting in linear log-odds or logits: linear discriminant analysis and
linear logistic regression. The essential difference between the two is in the way the linear function is fit to
the training data.

• A more direct approach: explicitly model the boundaries between the classes as linear. For two classes, this amounts fo
modeling the decision boundary as a hyperplane. Two methods for this: the perceptron model, which finds a separating
hyperplane in the data, if it exists, and a method for finding an optimally separating hyperplane if one exists, or else a
hyperplane that minimizes some measure of overlap in the training data.
• The linear approaches in this chapter can be generalized with basis expansions.
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4.2 Linear Regression of an Indicator Matrix

Code response in an indicator response matrix Y, an N ×K matrix of N training instances, where Yk = 1 if G = k, else 0. Fit
a linear regression model to each of the columns of Y simultaneously. The fit is given by

Ŷ = X
(
XT X

)−1 XT Y

, where the (p + 1)×K coefficient matrix B =
(
XT X

)−1 XT Y.

A new observation with input x is classified as follows:

• compute the fitted output f̂(x)T = (1, xT )B̂, a K vector;
• identify the largest component and classify accordingly:

Ĝ(x) = argmaxk∈Gf̂k(x)

????????????????????? pg.104

4.3 Linear Discriminant Analysis

Decision theory for classification says that we need to know the class posteriorsP (G | X) for optimal classification. Suppose fk(x)
is the class-conditional probability density of X in class G = k (i.e. P (X | G) = fk(x)), and let πk be the prior probability of
class k, with

∑K
k=1 πk = 1. Applying Bayes rule:

P (G = k | X = x) = fk(x)πk∑K
ℓ=1 fℓ(x)πℓ

In terms of ability to classify, having fk(x) is almost equivalent to having the quantity P (G = k | X = x). Many techniques are
based on models for the class densities fk(x):

• linear and quadratic discriminant analysis: fk(x) are Gaussian
• flexible mixtures of Gaussians allow nonlinear decision boundaries
• nonparametric density estimates for each class density allow the most flexibility
• Naive Bayes models are a variant of the previous case, and assume that each of the class densities are products of marginal

densities; i.e., they assume that the inputs are conditionally independent in each class

Suppose that we model each class density as multivariate Gaussian:

fk(x) = 1
(2π) p

2 |Σk|
1
2

e− 1
2 (x−µk)T Σ−1

k
(x−µk)

Linear discriminant analysis (LDA) arises in the special case when we assume that the classes have a common covariance matrix
Σk = Σ∀k. In comparing two classes k and l, it is sufficient to look at the log-ratio:
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log P (G = k | X = x)
P (G = k | X = x)

= log fk(x)πk

fℓ(x)πℓ

= log fk(x)
fℓ(x)

+ log πk

πℓ

= log πk

πℓ
+ log e− 1

2 (x−µk)T Σ−1(x−µk)

(2π) p
2 |Σ| 12

(2π)
p
2 |Σ| 12

e− 1
2 (x−µℓ)T Σ−1(x−µℓ) Normalization factors cancel

= log πk

πℓ
− 1

2
(x− µk)T Σ−1 (x− µk) + 1

2
(x− µℓ)T Σ−1 (x− µℓ)

= log πk

πℓ
− 1

2
xT Σ−1x + xT Σ−1µk −

1
2

µT
k Σ−1µk + 1

2
xT Σ−1x− xT Σ−1µℓ + 1

2
µT

ℓ Σ−1µℓ Quadratic parts cancel

= log πk

πℓ
− 1

2
(µk − µℓ)T Σ−1 (µk − µℓ) + xT Σ−1(µk − µℓ)

This equation for log-odds is linear in x, implying that the decision boundary between k and l is linear in x, and in p dimensions is a
hyperplane.

In practice the parameters of the generating Gaussians are unknown, and need to be estimated from the training data:

• π̂k = Nk/N , where Nk is the number of class-k observations;
• µ̂k =

∑
gi=k xi/Nk ;

• Σ̂ =
∑k

k=1
∑

gi=k (xi − µ̂k) (xi − µ̂k)T
/ (N −K)

QDA arises in the case that the classes do not have common covariance matrices, and thus the quadratic term in the discriminant
function does not cancel. ?????????????

4.4 Logistic Regression

Logistic regression- model the posterior probabiltiies of the K classes via linear functions in x, while ensuring that they sum to one
and remain in [0, 1] (so that they can be interepreted as probabilties). The model:

log P (G = 1 | X = x)
P (G = K | X = x)

= β10 + βT
1 x

log P (G = 2 | X = x)
P (G = K | X = x)

= β20 + βT
2 x

...

log P (G = K − 1 | X = x)
P (G = K | X = x)

= β(K−1)0 + βT
K−1x

The model is specified in terms of K − 1 log-odds or logit transformations (reflecting the constraint that the probabilities sum to one,
so the K th probability is determined by the previous K − 1). From the log-odds above, we can calculate the probability of the last
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(K th) class:

P (G = K | X = x) = 1−
K−1∑
ℓ=1

P (G = ℓ | X = x)

P (G = K | X = x) = 1−
K−1∑
ℓ=1

P (G = K | X = x) exp
(
βℓ0 + βT

ℓ x
)

P (G = K | X = x) = 1− P (G = K | X = x)
K−1∑
ℓ=1

exp
(
βℓ0 + βT

ℓ x
)

P (G = K | X = x)

[
1 +

K−1∑
ℓ=1

exp
(
βℓ0 + βT

ℓ x
)]

= 1

P (G = K | X = x) = 1
1 +

∑K−1
ℓ=1 exp

(
βℓ0 + βT

ℓ x
)

and the probability for any class k:

P (G = k | X = x) = P (G = K | X = x) exp
(
βk0 + βT

k x
)

P (G = k | X = x) =
exp

(
βk0 + βT

k x
)

1 +
∑K−1

ℓ=1 exp
(
βℓ0 + βT

ℓ x
)

These probabilities sum to one as expected. The model uses the last class K as the denominator in the odds-ratios, however, the
choice of the class to use as the denominator is arbitrary in that the estimates don’t change by this choice. To emphasize the depen-
dence on the entire parameter set θ = {β10, βT

1 , . . . , β(K−1)0, βT
K−1}, we denote the probabilities P (G = k | X = x) =

pk(x; θ).

There is no closed form solution for the coefficients θ, so logistic regression models are usually fit by maximum likelihood, using the
conditional likelihood of G given X . Since P (G | X) completely specifies the conditional distribution, the multinomial distribution is
appropriate. The log-likelihood for N observations is

ℓ(θ) =
N∑

i=1
log pgi

(xi; θ)

, where pk(xi; θ) = P (G = k | X = xi; θ). Taking the two-class case, since the algorithms simplify considerably. Code
the two-class gi via a 0/1 response yi, where yi = 1 when gi = 1, and yi = 0 when gi = 2. Let p1(x; θ) = p(x; θ), and
p2(x; θ) = 1− p(x; θ). The log-likelihood can be written:

ℓ(β) =
N∑

i=1
{yi log p(xi; β) + (1− yi) log(1− p(xi; β))}

=
N∑

i=1

{
yi log p(xi; β)

1− p(xi; β)
+ log (1− p(xi; β))

}

=
N∑

i=1

{
yiβ

T xi + log

(
1− eβT xi

1 + eβT xi

)}

=
N∑

i=1

{
yiβ

T xi + log
(

1
1 + eβT xi

)}

=
N∑

i=1

{
yiβ

T xi − log
(

1 + eβT xi

)}
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To maximize log-likelihood, take the derivative to get the score equations, and set to zero.

ℓ(β) =
N∑

i=1

{
yiβ

T xi − log
(

1 + eβT xi

)}
∂ℓ(β)

∂β
=

N∑
i=1

{
yixi −

1
1 + eβT xi

(
eβT xi

)
(xi)

}
∂ℓ(β)

∂β
=

N∑
i=1

xi (yi − p(xi; β)) = 0

These are p + 1 equations nonlinear in β. Since there’s no closed form solution, we solve it numerically, using something called the
Newton-Raphson algorithm, which requires the second derivative or Hessian matrix:

∂ℓ(β)
∂β

=
N∑

i=1
xi

(
yi −

eβT xi

1 + eβT xi

)

∂2ℓ(β)
∂β∂βT

=
N∑

i=1
xi

xie
βT xi

(
1 + eβT xi

)
− xie

βT xi

(
eβT xi

)
(
1 + eβT xi

)2


=

N∑
i=1

xix
T
i

 eβT xi

1 + eβT xi
+

(
eβT xi

1 + eβT xi

)2


=
N∑

i=1
xix

T
i

(
p(xi; β) + p2(xi; β)

)
= −

N∑
i=1

xix
T
i p(xi; β) (1− p(xi; β))

Starting with a guess βold, a single Newton update is

βnew = βold −
(

∂2ℓ(β)
∂β∂βT

)−1
∂ℓ(β)

∂β

, where the derivatives are evalued at βold.

The score and the Hessian can be written conveniently in matrix notation. Let y denote the vector of yi values, X the N × (p + 1)
matrix of xi values, p the vector of fitted probabilities with ith element p(xi; βold) and W an N ×N diagonal matrix of weights with
ith diagonal element p(xi; βold)(1− p(xi; βold)). Then we have:

∂ℓ(β)
∂β

= XT (y− p)

∂2ℓ(β)
∂β∂βT

= −XT WX

The Newton step is thus:
βnew = βold +

(
XT WX

)−1 XT (y− p)

=
(
XT WX

)−1 XT W
(
Xβold + W−1 (y− p)

)
=
(
XT WX

)−1 XT Wz

Rewriting it this way re-expresses the Newton step as a weighted least squares step, with the response

z = Xβold + W−1 (y− p)
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sometimes known as the adjusted response. This algorithm is known as iteratively reweighted least squares or IRLS, since each
iteration solves the weighted least squares problem:

βnew ← argmin
β

(z−Xβ) W (z−Xβ)

4.5 Separating Hyperplanes

Separating hyperplane classifiers construct linear decision boundaries that explicitly try to separate the data into different classes as
well as possible. They provide the basis for support vector classifiers (Ch. 12).

A brief review of vector algebra.

Consider a hyperplane or affine set L defined by f(x) = β0 + βT x = 0. (inR2, this is a line.)

Some properties:

1. For any two points x1, x2 lying in L:

β0 + βT x1 = β0 + βT x2 = 0 by definition of L

βT x1 = βT x2

βT x1 − βT x2 = 0
βT (x1 − x2) = 0

• βT (x1 − x2) = 0 implies that the vector β is orthogonal to the vector (x1 − x2) on the surface of L.

• Hence, β∗ = β
∥β∥ is the vector normal to the surface of L.

2. For any point x0 ∈ L, βT x0 = −β0. (This follows directly from the definition of L.)

3. The signed distance of any point x to L is given by

β∗T (x− x0) projection of the vector x− x0 in the direction of β∗

= 1
∥β∥

(
βT x + β0

)
= 1
∥f ′(x)∥

f(x).

Hence, f(x) is proportional to the signed distance from x to the hyperplane defined by f(x) = 0.

4.5.1 Rosenblatt’s Perceptron Learning Algorithm

Perceptron learning algorithm - find a separating hyperplane by minimizing the distance of misclassified points to the decision bound-
ary.

• if response yi = 1 is misclassified, then xT
i β + β0 < 0

• if response yi = −1 is misclassified, then xT
i β + β0 > 0.

Therefore, the goal can be stated as minimizing

D(β, β0) = −
∑
i∈M

yi

(
xT

i β + β0
)

,

whereM indexes the set of misclassified points.

D(β, β0) is:
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• non-negative
• proportional to the distance of the misclassified points to the decision boundary βT x + β0.

The gradient (assumingM is fixed):

∇βD(β, β0) = −
∑
i∈M

yixi ∇β0D(β, β0) = −
∑
i∈M

yi

The perceptron algorithm uses stochastic gradient descent to minimize D(β, β0), i.e. the parameters are updated after visiting
each observation rather than the entire training set. The update rule:(

β
β0

)
←
(

β
β0

)
+ ρ

(
yixi

yi

)
, where ρ is the learning rate.

Problems with the perceptron algorithm:

• When the data are separable, there are many solutions, and the chosen solution depends on the initial values
• Although guaranteed to be finite, the number of steps can be very large. Smaller gaps require longer time to find.
• When the data are not separable, the algorithm will not converge, and cycles develop which can be hard to detect.

Optimal Separating Hyperplanes

Optimal separating hyperplane- separate two classes and maximize the distance to the closest point from either class

• provides a unique solution
• better performance on test data by maximizing the margin between classes

The optimization problem:
max

β,β0,∥β∥=1
Msubject to yi(xT

i β + β0) ≥M, i = 1, . . . , N.

This is equivalent to:
1
∥β∥

yi

(
xT

i β + β0
)
≥M note that this redefines β0

yi

(
xT

i β + β0
)
≥M∥β∥

Since for any β and β0 satisfying these inequalities, any positively scaled multiple satisfies them too, we can choose ∥β∥ = 1
M .

Then,
min
β,β0

= 1
2
∥β∥2subject to yi

(
xT

i β + β0
)
≥ 1, i = 1, . . . , N.

These constrains define an empty slab or margin around the linear decision boundary of thickness of 1
∥β∥ . Hence we choose β and

β0 to maximize its thickness. This is a convex optimization problem

?????the math got very hard, finish this later
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