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The linear model f(X) = β0 +
∑p

j=1 Xjβj with p > 1 inputs is called themultiple linear regression model . The least squares
estimates β̂ = (XT X)−1XT y for this model are best understood in terms of the estimates for the univariate linear model.

Suppose first a univariate model with no intercept, i.e.,
Y = Xβ + ϵ

. In the univariate case, the least squares estimate and residuals can be written as inner products:

β̂ = (XT X)−1XT y in the univariate case is

β̂ = ⟨x, y⟩
⟨x, x⟩

r = y − xβ̂

. This simple univariate regression provides the building block for multiple linear regression. Suppose next that the inputs
x1, x2, . . . , xp (the columns of the data matrixX) are orthogonal, i.e. ⟨xj , xk⟩ = 0 for all j ̸= k. Then, the multiple least squares
estimates β̂j are equal to the univariate estimates ⟨xj , y⟩/⟨xj , xj⟩:

β̂ = (XT X)−1XT y

β̂ =




− x1 −
− x2 −

...
− xp −


 | | |

x1 x2 · · · xp

| | |




−1 
− x1 −
− x2 −

...
− xp −

 y

=


⟨x1, x1⟩ ⟨x1, x2⟩ · · · ⟨x1, xp⟩
⟨x2, x1⟩ ⟨x2, x2⟩ · · · ⟨x2, xp⟩

...
...

. . .
...

⟨xp, x1⟩ ⟨xp, x2⟩ · · · ⟨xp, xp⟩


−1 

⟨x1, y⟩
⟨x2, y⟩

...
⟨xp, y⟩



=


⟨x1, x1⟩ 0 · · · 0

0 ⟨x2, x2⟩ · · · 0
...

...
. . .

...
0 0 · · · ⟨xp, xp⟩


−1 

⟨x1, y⟩
⟨x2, y⟩

...
⟨xp, y⟩



=


⟨x1, x1⟩−1 0 · · · 0

0 ⟨x2, x2⟩−1 · · · 0
...

...
. . .

...
0 0 · · · ⟨xp, xp⟩−1




⟨x1, y⟩
⟨x2, y⟩

...
⟨xp, y⟩



β̂ =


⟨x1,y⟩
⟨x1,x1⟩
⟨x2,y⟩
⟨x2,x2⟩
...

⟨xp,y⟩
⟨xp,xp⟩


I.e., when the inputs are orthogonal, they have no effect on each other’s parameter estimates in the model.
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Orthogonal inputs occur most often with balanced, designed experiments where orthogonality is enforced, but almost never with ob-
servational data. Hence we will have to orthogonalize them to carry this idea further. Suppose next that we have an intercept and a
single input x, i.e. y = βo + β1x. Then the least squares coefficient of x has the form

β̂1 = ⟨x − x̄1, y⟩
⟨x − x̄1, x − x̄1⟩

, where x̄ =
∑

i xi/N , and 1 = x0, the vector ofN ones.

β̂ = (XT X)−1XT y

=

[
− 1 −
− x1 −

]  | |
1 x1
| |

−1 [
− 1 −
− x1 −

]
y

=
[

⟨1, 1⟩ ⟨1, x1⟩
⟨x1, 1⟩ ⟨x1, x1⟩

]−1 [
⟨1, y⟩
⟨x, y⟩

]
=
=
= ⟨ ⟩⟨1, y⟩ + ⟨ ⟩⟨x, y⟩

= −⟨x1, 1⟩⟨1, y⟩ + ⟨1, 1⟩⟨x1, y⟩
⟨1, 1⟩⟨x1, x1⟩ − ⟨x1, 1⟩⟨1, x1⟩

=
−

∑
i xi

∑
i yi + N

∑
i xiyi

N
∑

i x2
i −

∑
i xi

∑
i xi

=
⟨x −

(∑
i

xi

N

)
1, y⟩

⟨x −
(∑

i
xi

N

)
1, x −

(∑
i

xi

N

)
1⟩

= ⟨x − x̄1, y⟩
⟨x − x̄1, x − x̄1⟩

We can view this estimate as the result of two applications of the simple regression. The steps are:

1. regress x on 1 to produce the residual z = x = x̄1;
2. regress y on the residual z to give the coefficient β̂1.

In this procedure, “regress b on a” means a simple univariate regression of b on a with no intercept, producing coefficient γ̂ =
⟨a, b⟩/⟨a, a⟩ and residual vector b − γ̂a. We say that b is adjusted for a, or is “orthogonalized” with respect to a.

Gram-Schmidt procedure for multiple regression

1. Initialize z0 = x0 = 1
2. For j = 1, 2, . . . , p

• Regress xj on z0, z1, . . . , zj−1 to produce coefficients γ̂ℓj :

γ̂ℓj = ⟨zℓ, xj⟩
⟨zℓ, zℓ⟩

, ℓ = 0, . . . , j − 1

and residual vector zj :

zj = xj −
j−1∑
k=0

γ̂kjzk
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3. Regress y on the residual zp to give the estimate β̂p, i.e.:

β̂p = ⟨zp, y⟩
⟨zp, zp⟩

Re-arranging the residual in step 2 (xj = zj +
∑j−1

k=0 γ̂kjzk), we can see that each of the xj is a linear combination of the
zk, k ≤ j. Since the zj are all orthogonal, they form a basis for the column space ofX, and hence the least squares projection
onto this subspace is ŷ. Since zp alone involves xp (with coefficient 1), we see that the coefficient β̂p = ⟨zp,y⟩

⟨zp,zp⟩ is indeed the
multiple regression coefficient ofy onxp. This key result exposes the effect of correlated inputs inmultiple regression. Note also
that by rearranging thexj , any one of them could be in the last position, and a similar result holds. Hence, statedmore generally,
we have shown that the jth multiple regression coefficient is the univariate regression coefficient ofy onx0,1,...(j−1)(j+1)...,p,
the residual after regressing xj on x0, x1, . . . , xj−1, xj+1, . . . , xp:

The multiple regression coefficient β̂j represents the additional contribution of xj on y, after xj has been adjusted
for x0, x1, . . . , xj−1, xj+1, . . . , xp.

Ifxp is highly corelated with some of the otherxk ’s, the residual vector zp will be close to zero, and hcne the coefficient β̂p = ⟨zp,y⟩
⟨zp,zp⟩

will be very unstable. This will be true for all the variables in the correlated set. In such situations, we might have all the Z-scores be
small – any one of the set can be deleted – yet we cannot delete them all.

We can also obtain an alternate formula for the variance estimates of the coefficients:

Var(β̂p) = σ2

⟨zp, zp⟩
= σ2

∥zp∥2

. In other words, the precision with which we can estimate β̂p depends on the length of the residual vector zp; this represents how
much of xp is unexplained by the other xk ’s.

Step 2 of the algorithm can be represented in matrix form:

X = ZΓ

, where zj has as columns the zj (in order), andΓ is the upper triangular matrix with entries γ̂kj . I.e.:

X = ZΓ =

 | | |
z0 z1 · · · zp

| | |




γ0,0 γ0,1 · · · γ0,p

0 γ1,1 · · · γ1,p

...
...

. . . · · ·
0 0 · · · γp,p


Introducing the diagonal matrixD with jth diagonal entryDj,j = ∥zj∥, we get:

X = ZD−1DΓ
= QR

, the so-calledQR decomposition ofX. HereQ is anN × (p + 1) orthogonal matrix,QT Q = I, andR is a (p + 1) × (p + 1)
upper triangular matrix.

TheQR decomposition represents a convenient orthogonal basis for the column space ofX. For example, the least squares solution
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is given by:
β̂ = (XT X)−1XT y

=
[
(QR)T (QR)

]−1 (QR)T y

=
[
RT QT QR

]−1 RT QT y

= R−1 (
RT

)−1 RT QT y
β̂ = R−1QT y,

ŷ = Xβ̂

= (QR)
(
R−1QT y

)
ŷ = QQT y

β̂ = R−1QT y is easy to solve becauseR is upper triangular.
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