
CS229 problem set 2
James Chuang

May 2, 2017

Contents
CS229 Autumn 2016 Problem Set #2 1

1. Constructing kernels . 1
2. Kernelizing the Perceptron . 3
3. Spam classification . 4
4. Properties of the VC dimension . 6
5. Training and testing on different distributions . 7
6. Boosting and high energy physics . 8

CS229 Autumn 2016 Problem Set #2

1. Constructing kernels

In class, we saw that by choosing a kernelK(x, z) = ϕ(x)Tϕ(z), we can implicitly map data to a high dimensional space, and
have the SVM algorithm work in that space. One way to generate kernels is to explicitly define the mapping ϕ to a higher dimensional
space, and then work out the correspondingK .

However, in this question we are interested in direct construction of kernels, I.e., suppose we have a functionK(x, z) that we think
gives an appropriate similarity measure for our learning problem, and we are considering plugging K into the SVM as the kernel
function. However, forK(x, z) to be a valid kernel, it must correspond to an inner product in some higher dimensional space resulting
from some feature mapping ϕ. Mercer’s theorem tells us thatK(x, z) is a (Mercer) kernel iff for any finite set

{
x(1), . . . , x(m)}, the

matrixK is symmetric and positive semidefinite, where the square matrixK ∈ Rm×m is given byKij = K
(
x(i), x(j)).

Now the question: LetK1,K2 be kernels overRn×Rn, let a ∈ R+ be a positive real number, let f : Rn 7→ R, letϕ : Rn → Rd,
letK3 be a kernel overRd × Rd, and let p(x) be a polynomial over x with positive coefficients.

For each of the functionsK below, state whether it is necessarily a kernel. If you think it is, prove it; if you think it isn’t, give a counter-
example.

[Hint: For part (e), the answer is thatK is indeed a kernel. You still have to prove it, though. (This one may be harder than the rest.)
The result may also be useful for another part of the problem.]

(a)K(x, z) = K1(x, z) +K2(x, z)

The kernel matrix corresponding toK(x, z) is symmetric since it is the sum of the two valid kernel matrices (i.e. symmetric matrices)
K1 andK2. Therefore,K(x, z) is PSD and therefore a valid kernel if ∀ z, zTKz ≥ 0:

zTKz

= zT (K1 +K2) z
= zTK1z + zTK2z matrix mult. distributive over addition

≥ 0 zTK1z ≥ 0, zTK2z ≥ 0 since they are valid kernels
∴ K is a valid kernel

(b)K(x, z) = K1(x, z)−K2(x, z):

1

Similar to 1a,K(x, z) is symmetric since it is the difference of two symmetric matrices.

zTKz

= zT (K1 −K2) z
= zTK1z − zTK2z matrix mult. distributive over addition

≥ 0 only if zTK1z > zTK2z

∴ K is not a valid kernel

(c)K(x, z) = aK1(x, z)

K(x, z) is symmetric because it is a symmetric matrixK1 scaled by a scalar a.

zTKz

= zT (aK1) z
= azTK1z

≥ 0 a ∈ R+, zTK1z ≥ 0 ∀z
∴ K is a valid kernel

(d)K(x, z) = −aK1(x, z)

By the same logic as 1c,K is not a valid kernel.

(e)K(x, z) = K1(x, z)K2(x, z)

K(x, z) is symmetric since scalar multiplication is commutative.

K1 is a kernel, so ∃ ϕ(1) such thatK1(x, z) =
(
ϕ(1)(x)

)T (
ϕ(1)(z)

)
K(x, z) = K1(x, z)K2(x, z) K2 is a kernel, so ∃ ϕ(2) such thatK2(x, z) =

(
ϕ(2)(x)

)T (
ϕ(2)(z)

)
=
∑

i

ϕ
(1)
i (x)ϕ(1)

i (z)
∑

j

ϕ
(2)
j (x)ϕ(2)

j (z)

=
∑

i

∑
j

ϕ
(1)
i (x)ϕ(1)

i (z)ϕ(2)
j (x)ϕ(2)

j (z)

=
∑

i

∑
j

[
ϕ

(1)
i (x)ϕ(2)

j (x)
] [
ϕ

(1)
i (z)ϕ(2)

j (z)
]

def ψ(·) = ϕ(1)(·)ϕ(2)(·)

=
∑
(i,j)

ψi,j(x)ψi,j(z)

K(x, z) = ψ(x)Tψ(z), ∴ K is a valid kernel.

(f)K(x, z) = f(x)f(z)

K(x, z) is symmetric since scalar multiplication is commutative.

Let f(x) = ψ(x) as in 1e., thenK is a valid kernel.

(g)K(x, z) = K3(ϕ(x), ϕ(z))

K3 is a valid kernel for any finite set
{
x(1), . . . , x(m)}. This includes the set

{
ϕ
(
x(1)) , . . . , ϕ (x(m))}, so K is also a valid

kernel.

(h)K(x, z) = p(K1(x, z))

2

Combining the results from 1a (sum), 1c (scalar product), 1e (powers), and 1f (constant term), any polynomial of a kernelK1 will also
be a kernel.

2. Kernelizing the Perceptron

Let there be a binary classification problem with y ∈ {−1, 1}. The perceptron uses hypotheses of the form hθ(x) = g
(
θTx

)
,

where g(z) = sign(z) = 1 if z ≥ 0,−1 otherwise.

In this problem we will consider a stochastic gradient descent-like implementation of the perceptron algorithm where each update to
the parameters θ is made by using only one training example. However, unlike stochastic gradient descent, the perceptron algorithm
will only make one pass through the entire training set. The update rule for this version of the perceptron algorithm is given by

θ(i+1) :=

{
θ(i) + αy(i+1)x(i+1) if hθ(i)

(
x(i+1)) y(i+1) < 0

θ(i) otherwise,

where θ(i) is the value of the parameters after the algorithm has seen the first i training examples. Prior to seeing any training examples,
θ(0) is initialized to 0⃗.

LetK be a Mercer kernel corresponding to some very high-dimensional feature mapping ϕ. Suppose ϕ is so high-dimensional (say
∞-dimensional) that it’s infeasible to ever representϕ(x) explicitly. Describe how you would apply the “kernel trick” to the perceptron
to make it work in the high-dimensional feature space ϕ, but without ever explicitly computing ϕ(x). [Note: You don’t have to worry
about the intercept term. If you like, think of ϕ as having the property that ϕ0(x) = 1 so that this is taken care of.] Your description
should specify

(a) How you will (implicitly) represent the high-dimensional parameter vector θ(i), including how the initial value θ(0) = 0⃗ is repre-
sented (note that θ(i) is now a vector whose dimension is the same as the feature vectors ϕ(x));

Since α is used to represent the learning rate, use β to represent the coefficients in the representer theorem:

θ(i) =
i∑

ℓ=1

βℓϕ
(
x(ℓ)
)

representer theorem; substitute ϕ(x) for x

ϕ
(
x(ℓ)
)

cannot be calculated explicitly,

but it doesn’t need to be, as seen below

initial value θ(0) is the empty sum above

(b)Howyouwill efficientlymake a prediction on a new inputx(i+1). I.e., how youwill computehθ(i)
(
x(i+1)) = g

(
θ(i)Tϕ

(
x(i+1))),

using your representation of θ(i); and

hθ(i)

(
x(i+1)

)
= g

(
θ(i)Tϕ

(
x(i+1)

))
= g

(
i∑

ℓ=1

βℓϕ
(
x(ℓ)
)T

ϕ
(
x(i+1)

))

= g

(
i∑

ℓ=1

βℓK
(
x(ℓ), x(i+1)

))

(c) How you will modify the update rule given above to perform an update to θ on a new training example
(
x(i+1), y(i+1)); i.e., using

the update rule corresponding to the feature mapping ϕ:

θ(i+1) := θ(i) + α1
{
θ(i)Tϕ

(
x(i+1)

)
y(i+1) < 0

}
y(i+1)ϕ

(
x(i+1)

)

3

[Hint: our discussion of the representer theorem may be useful.]

θ(i+1) =
i+1∑
ℓ=1

βℓϕ
(
x(ℓ)
)

from part a

= θ(i) + βi+1ϕ
(
x(i+1)

)
the update is the previous θ

plus the next training example weighted by β(i+1)

= θ(i) + α
(
y(i) − hθ(i)

(
ϕ
(
x(i+1)

)))
ϕ
(
x(i)
)

perceptron update rule? hθ(i) is calculated as in part b

Update rule:
θ ← θ + α

(
y(i) − hθ

(
ϕ
(
x(i)
)))

ϕ
(
x(i)
)

3. Spam classification

In this problem, we will use the naive Bayes algorithm and an SVM to build a spam classifier.

In recent years, spam on electronic newsgroups has been an increasing problem. Here, we’ll build a classifier to distinguish between
“real” newsgroup messages, and spam messages. For this experiment, we obtained a set of spam emails, and a set of genuine
newsgroup messages. Using only the subject line and body of each message, we’ll learn to distinguish between the spam and the
non-spam.

In order to get the text emails into a form usable by naive Bayes, we’ve already done some preprocessing on the messages.
You can look at two sample spam emails in the files spam_sample_original*, and their preprocessed forms in the files
spam_sample_preprocessed*. The first line in the preprocessed format is just the label and is not part of the message.
The preprocessing ensures that only the message body and subject remain in the dataset; email addresses (EMAILADDR), web
addresses (HTTPADDR), currency (DOLLAR), and numbers (NUMBER) were also replaced by the special tokens to allow them
to be considered properly in the classification process. (In this problem, we’ll call the features “tokens” rather than “words”, since
some of the features will correspond to special values like EMAILADDR. You don’t have to worry about the distinction.) The files
news_sample_original and news_sample_preprocessed also give an example of a non-spam mail.

The work to extract feature vectors out of the documents has also been done for you, so you can just load in the design matrices (called
document-word matrices in text classification) containing all the data. In a document-word matrix, the i-th row represents the i-th
document/email, and the j-th column represents the j-th distinct token. This, the (i, j)-entry of this matrix represents the numbers of
occurrences of the jth token in the ith document.

For this problem, we’ve chosen as our set of tokens considered (i.e., as our vocabulary) only the medium frequency tokens. The
intuition is that tokens that occur too often or too rarely do not have much classification value. (Example tokens that occur very often
are words like “the”, “and”, and “of”, which occur in so many emails and are sufficiently content-free that they aren’t worth modeling.)
Also, words were stemmed using a standard stemming algorithm; basically, this means that “price”, “prices”, and “priced” have all
been replaed with “price”, so that they can be treated as the same word. For a list of the tokens used, see the file TOKENS_LIST.

Since the document-word matrix is extremely sparse (has lots of zero entries), we have stored it in our own efficient format to save
space. You don’t have to worry about this format. The file readMatrix.m provides the readMatrix function that reads in the
document-word matrix and the correct class labels for the various docuemnts. Code in nb_train.m and nb_test.m shows how
readMatrix should be called. The documentation at the top of these two fields will tell you all you need to know about the setup.

(a) Implement a naive Bayes classifier for spam classification, using the multinomial event model and Laplace smoothing.

You should use the code outline provided in nb_train.m to train your parameters, and then use these parameters to classify the
test set data by filling in the code in nb_test.m. You may assume that any parameters computed in nb train.m are in memory when
nb test.m is executed, and do not need to be recomputed (i.e., that nb_test.m is executed immediately after nb_train.m).

Train your parameters using the document-word matrix in MATRIX.TRAIN, and then report the test set error on MATRIX.TEST.

Remark. If you implement naive Bayes the straightforward way, you’ll find that the computed p(x | y) =
∏

i p(xi | y) often
equals zero. This is because p(xi | y), which is the product of many numbers less than one, is a very small number. The standard

4

computer representation of real numbers cannot handle numbers that are too small, and instead rounds them off to zero. (This is
called “underflow.”) You’ll have to find a way to compute naive Bayes’ predicted class labels without explicitly representing very small
numbers such as p(xi | y). [Hint: Think about using logarithms.]

Test set error = 1.625%. See python notebook ps2-3.ipynb.

(b) Intuitively, some tokens may be particularly indicative of an email being in a particular class. We can try to get an informal sense of
how indicative token i is for the SPAM class by looking at:

log p (xj = i | y = 1)
p (xj = i | y = 0)

= log
(

P (token i | email is SPAM)
P (token i | email is NOTSPAM)

)
.

Using the parameters fit in part (a), find the 5 tokens that are most indicative of the SPAM class (i.e., have the highest positive value
on the measure above). The numbered list of tokens in the file TOKENS_LIST should be useful for identifying the words/tokens.

Top 5 predictive tokens: ‘httpaddr’, ‘spam’, ‘unsubscrib’, ‘ebai’, ‘valet’. See python notebook ps2-3.ipynb.

(c) Repeat part (a), but with training sets of size ranging from 50, 100, 200, … , up to 1400, by using the files MATRIX.TRAIN.*. Plot
the test error each time (use MATRIX.TEST as the test data) to obtain a learning curve (test set error vs. training set size). You may
need to change the call to readMatrix in nb_train.m to read the correct file each time. Which training-set size gives the best
test set error?

The lowest test set error is observed for the largest training set (1400 examples). See python notebook ps2-3.ipynb.

(d) Train an SVM on this dataset using stochastic gradient descent and the radial basis function (also known as the Gaussian) kernel,
which sets

K(x, z) = exp
(
− 1

2τ2 ∥x− z∥
2
2

)
.

In this case, recall that (as proved in class) the objective with kernel matrixK =
[
K(1) · · ·K(m)] ∈ Rm×m is given by

J(α) = 1
m

m∑
i=1

[
1− y(i)K(i)Tα

]
+

+ λ

2
αTKα

5

where [t]+ = max {t, 0} is the positive part function. In this case, the gradient (actually, this is known as the subgradient) of the
individual loss terms is

∇α

[
1− y(i)K(i)α

]
+

=

{
−y(i)K(i) if y(i)K(i)Tα < 1
0 otherwise.

In your SVM training, you should perform stochastic gradient descent, where in each iteration you choose an index i ∈ {1, . . . ,m}
uniformly at random, for a total of 40 ·m steps, wherem is the training set size, and your kernel should use τ = 8 and regularization
multiplier λ = 1

64m . For this part of the problem, you shoudl also replace each training or test point x(i) with a zero-one vector z(i),
where z(i) = 1 if x(i)

j > 0 and z(i) = 0 if x(i) = 0. Initialize your SGD procedure at α = 0.

The output of your training code, which you should implement in svm_test.m, should be theα vector that is the average of all the α
vectors that your iteration updates. At iteration t of stochastic gradient descent you should use stepsize 1/

√
t.

(e) How do naive Bayes and Support Vector Machines compare (in terms of generalization error) as a function of the training set size?

4. Properties of the VC dimension

In this problem, we investigate a few properties of the Vapnik-Chervonenkis dimension, mostly relating to how VC(H) increases as
the setH increases. For each part of this problem, you should state whether the given statement is true, and justify your answer with
either a formal proof or a counter-example.

(a) Let two hypothesis classesH1 andH2 satisfyH1 ⊆ H2. Prove or disprove: VC (H1) ≤ VC (H2).

True.

• Let VC (H1) = d.
– I.e.,H1 can shatter a set of d points.

• SinceH1 is contained withinH2,H2 also shatters d.
• Therefore, VC (H1) ≤ VC (H2).

(b) Let H1 = H2 ∪ {h1, . . . , hk}. (I.e., H1 is the union of H2 and some set of k additional hypotheses.) Prove or disprove:
VC (H1) ≤ VC (H2) + k. [Hint: You might want to start by considering the case of k = 1.]

True.

• Consider the case of k = 1, i.e. H1 = H2 ∪ {h1}.
– Let VC (H1) = d

∗ then, there exists a set S1 such thatH1 realizes the correct labeling of every point in S1
– Pick an arbitrary (x ∈ S1).

∗ H1 shatters S1, so there must be a hypothesis h′ which agrees with h1 on labelings for all points in S1 except x.
– DefineH ′ : H1\{h1}.

∗ H ′ achieves all possible labelings on S′ ≡ S1\{x}, i.e. H ′ shatters S′

– then,

VC (H ′) ≥ |S′| sinceH ′ shatters the set S′, VC(H ′) is at least the size of S′

VC (H ′) ≥ d− 1

H ′ ⊆ H2

VC (H ′) ≤ VC (H2) from part a
d− 1 ≤ VC (H2) VC (H ′) ≥ d− 1

VC (H1)− 1 ≤ VC (H2) VC (H1) ≡ d
VC (H1) ≤ VC (H2) + 1

(At first I thought the answer was obviously false, until I understood the difference between a hypothesis and a hypothesis class. A
single hypothesis can’t shatter a set, since it only realizes one set of labels on the set. I didn’t get this until after I looked at the solutions,
so this answer is pretty much from the solutions.)

6

(c) LetH1 = H2 ∪H3. Prove or disprove: VC (H1) ≤ VC (H2) + VC (H3).

False.

• from part b, we have VC (H1) ≤ VC (H2) + |H3|, where |H3| is the number of hypotheses inH3.
– VC (H3) ≤ |H3|, since a hypothesis class cannot shatter a set larger than the number of hypotheses in the hypothesis

class
– if VC (H3) = k, then the statement is true
– however, if VC (H3) < k, then the statement is not necessarily true

5. Training and testing on different distributions

In the discussion in class about learning theory, a key assumption was that we trained and tested our learning algorithms on the same
distributionD. In this problem, we’ll investigate one special case of training and testing on different distributions. Specifically, we will
consider what happens when the training examples are noisy, but the test labels are not.

Consider a binary classification problem with labels y ∈ {0, 1}, and let D be a distribution over (x, y), that we’ll think of as the
original, “clean” or “uncorrupted” distribution. DefineDτ to be a “corrupted” distribution over (x, y) which is the same asD, except
that the labels y have some probability 0 ≤ τ < 0.5 of being flipped. Thus, to sample fromDτ , we would first sample (x, y) from
D, and then with probability T (independently of the observed x and y) replace y with 1− y. Note thatD0 = D.

We define the generalization error with respect toDT to be

ετ (h) = P(x,y)∼Dτ
[h(x) ̸= y] .

Note that ε0(h) is the generalization error with respect to the “clean” distribution; it is with respect to ε0 that we wish to evaluate our
hypotheses.

(a) For any hypothesis h, the quantity ε0(h) can be calculated as a function of ετ (h) and τ . Write down a formula for ε0(h) in terms
of ετ (h) and τ , and justify your answer.

An error in the ‘corrupted’ distribution occurs if a classification error wasmade on the original distribution and the label was not inverted,
or if classification was correct on the original distribution but the label was inverted. Therefore,

ετ = (error onD) (label not inverted) + (no error onD) (label inverted)
ετ = ε0 (1− τ) + (1− ε0) τ
ετ = ε0 − τε0 + τ − τε0

ετ = ε0 (1− 2τ) + τ

ε0 = ετ − τ
1− 2τ

(b) Let |H| be finite, and suppose our training set S =
{(
x(i), y(i)) ; i = 1, . . . ,m

}
is obtained by drawingm examples IID from

the corrupted distribution Dτ . Suppose we pick h ∈ H using empirical risk minimization: ĥ = arg minh∈H ε̂S(h). Also, let
h∗ = arg minh∈H ε0(h).

Let any δ, γ > 0 be given. Prove that for

ε0

(
ĥ
)
≤ ε0(h∗) + 2γ

to hold with probability 1− δ, it suffices that

m ≥ 1
2(1− 2τ)2γ2 log 2|H|

δ
.

7

ε0

(
ĥ
)

=
ετ

(
ĥ
)
− τ

1− 2τ

≤
ε̂τ

(
ĥ
)

+ γ̄ − τ

1− 2τ
w.p. (1− δ)

∣∣∣ετ

(
ĥ
)
− ε̂τ

(
ĥ
)∣∣∣ ≤ γ̄ by Hoeffding ineq.

≤ ε̂τ (h∗) + γ̄ − τ
1− 2τ

w.p. (1− δ) ε̂τ

(
ĥ
)
≤ ε̂τ (h∗) , i.e. train err. < generalization err.

≤ ετ (h∗) + 2γ̄ − τ
1− 2τ

w.p. (1− δ) |ετ (h∗)− ε̂τ (h∗)| ≤ γ̄ by Hoeffding ineq.

≤ (1− 2τ) ε0 (h∗) + τ + 2γ̄ − τ
1− 2τ

w.p. (1− δ) ετ (h∗) = (1− 2τ) ε0 (h∗) + τ (from part a)

≤ ε0 (h∗) + 2γ̄
1− 2τ

w.p. (1− δ)

ε0

(
ĥ
)
≤ ε0 (h∗) + 2γ w.p. (1− δ) letting γ̄ = γ (1− 2τ) , where δ = 2|H| exp

(
−2γ̄2m

)
δ = 2|H| exp

(
−2γ̄2m

)
δ = 2|H| exp

(
−2 (γ (1− 2τ))2

m
)

γ̄ = γ (1− 2τ)

δ

2|H|
= exp

(
−2 (γ (1− 2τ))2

m
)

log δ

2|H|
= −2 (γ (1− 2τ))2

m

m ≥ 1
2 (1− 2τ)2

γ2
log 2|H|

δ

Remark. This result suggests that, roughly, m examples that have been corrupted at noise level τ are worth about as much as
(1−2τ)2m uncorrupted training examples. This is a useful rule-of-thumb to know if you ever need to decide whether/howmuch to pay
for a more reliable source of training data. (If you’ve taken a class in information theory, you may also have heard that (1−H(τ))m
is a good estimate of the information in them corrupted examples, whereH(τ) = − (τ log2 τ + (1− τ) log2 (1− τ)) is the
“binary entropy” function. And indeed, the functions (1− 2τ)2 and 1−H(τ) are quite close to each other.)

(c) Comment briefly on what happens as τ approaches 0.5.

As τ → 0.5, the number of samplesm needed for the guarantee in part b goes to infinity. This makes sense since at τ = 0.5, the
labels of the training data are assigned randomly.

6. Boosting and high energy physics

In class, we discussed boosting algorithms and decision stumps. In this problem, we explore applications of these ideas to detect
particle emissions in a high-energy particle accelerator. In high energy physics, such as at the Large Hadron Collider (LHC), one
accelerates small particles to relativistic speeds and smashes them into one another, tracking the emitted particles. The goal in these
problems is to detect the emission of certain interesting paticles based on other observed particles and energies. In this problem, we
explore the application of boosting to a higher energy physics problem, where we use decision stumps applied to 18 low- and high-level
physics-based features. All data for the problem is available at http://cs229.stanford.edu/materials/boost_data.tgz.

For the first part of the problem, we explore how decision stumps based on thresholding can provide a weak-learning guarantee. In
particular, we show that for real-valued attributes x, thre is an edge γ > 0 that decision stumps guarantee. Recall that thresholding-
based decision stumps are functions indexed by a threshold s and sign +/−, such that

ϕs,+(x) =

{
1 if x ≥ s
−1 if x < s

and ϕs,−(x) =

{
−1 if x ≥ s
1 if x < s

8

http://cs229.stanford.edu/materials/boost_data.tgz

That is, ϕs,+(x) = −ϕs,−(x). We assume for simplicity in the theoretical parts of this exercise that our input attribute vectors
x ∈ R, that is, they are one-dimensional. Now, we would like to guarantee that there is some γ > 0 and a threshold s such that, for
any distribution p on the training set

{
x(i), y(i)}m

i=1 (where y(i) ∈ {−1,+1} and x(i) ∈ R, and we recall that p is a distribution
on the training set if

∑m
i=1 pi = 1 and pi ≥ 0 for each i) we have

m∑
i=1

pi1
{
y(i) ̸= ϕs,+

(
x(i)
)}
≤ 1

2
− γ or

m∑
i=1

pi1
{
y(i) ̸= ϕs,−

(
x(i)
)}
≤ 1

2
− γ

For simplicity, we assume that all of the x(i) are distinct, so that none of them are equal. We also assume (without loss of generality,
but this makes the problem notationally simpler) that

x(1) > x(2) > · · · > x(m).

(a) Show that for each threshold s, there is somem0(s) ∈ {0, 1, . . . ,m} such that

m∑
i=1

pi1
{
ϕs,+

(
x(i)
)}

= 1
2
− 1

2

m0(s)∑
i=1

y(i)pi −
m∑

i=m0(s)+1

y(i)pi

and

m∑
i=1

pi1
{
ϕs,−

(
x(i)
)}

= 1
2
− 1

2

 m∑
i=m0(s)+1

y(i)pi −
m0(s)∑

i=1
y(i)pi

Treat sums over empty sets of indices as zero, so that

∑0
i=1 ai = 0 for any ai, and similarly

∑m
i=m+1 ai = 0.

(b) Define, for eachm0 ∈ {0, 1, . . . ,m},

f (m0) =
m0∑
i=1

y(i)pi −
m∑

i=m0+1
y(i)pi.

Show that there exists some γ > 0, which may depend on the training set sizem (but should not depend on p), such that for any set
of probabilities p on the training set, where pi ≥ 0 and

∑m
i=1 pi = 1, we can findm0 with

|f (m0)| ≥ 2γ.

What is your γ?

(Hint: Consider the difference f(m0)− f(m0 + 1).)

(c) Based on your answer to part (6b), what edge can thresholded decision stumps guarantee on any training set
{
x(i), y(i)}m

i=1,
where the raw attributes x(i) ∈ R are all distinct? Recall that the edge of a weak classifier ϕ : R → {−1, 1} is the constant
γ ∈

[
0, 1

2
]
such that

m∑
i=1

pi1
{
ϕ
(
x(i)
)
̸= y(i)

}
≤ 1

2
− γ.

Can you give an upper bound on the number of thresholded deicision stumps required to achieve zero error on a given training set?

(d)

9

	CS229 Autumn 2016 Problem Set #2
	1. Constructing kernels
	2. Kernelizing the Perceptron
	3. Spam classification
	4. Properties of the VC dimension
	5. Training and testing on different distributions
	6. Boosting and high energy physics

