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CS229 Autumn 2016 Problem Set #1

1. Logistic Regression

a. Consider the average empirical loss (the risk) for logistic regression:

J(θ) = 1
m

m∑
i=1

log
(

1 + e−y(i)θT x(i)
)

= − 1
m

m∑
i=1

log
(

hθ

(
y(i)x(i)

))
hθ(x) = g(θT x),

g(z) = 1
1 + e−z

Find the Hessian H of this function, and show that for any vector z, it holds true that

zT Hz ≥ 0.

Hint: You might want to start by showing the fact that
∑

i

∑
j zixixjzj =

(
xT z

)2 ≥ 0.

Remark: This is one of the standard ways of showing that the matrix H is positive semidefinite, written “H ⪰ 0.” This implies that J
is convex, and has no local minima other than the global one. If you have some other way of showing H ⪰ 0, you’re also welcome to
use your method instead of the one above.
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J(θ) = 1
m

m∑
i=1

log
(

1 + e−y(i)θT x(i)
)

∂J(θ)
∂θk

= 1
m

m∑
i=1

e−y(i)θT x(i)

1 + e−y(i)θT x(i)

(
−y(i)x

(i)
k

)
∂J(θ)
∂θk

= 1
m

m∑
i=1

1
1 + ey(i)θT x(i)

(
−y(i)x

(i)
k

)
∂J(θ)
∂θk

= − 1
m

m∑
i=1

hθ

(
−y(i)x(i)

)(
y(i)x

(i)
k

)
∂2J(θ)
∂θℓ∂θk

= − 1
m

m∑
i=1

∂

∂θℓ
hθ

(
−y(i)x(i)

)(
y(i)x

(i)
k

)
∂2J(θ)
∂θℓ∂θk

= − 1
m

m∑
i=1

hθ

(
−y(i)x(i)

)(
1− hθ

(
−y(i)x(i)

))(
−y(i)x

(i)
k

)(
−y(i)x

(i)
ℓ

)
Hkl = − 1

m

m∑
i=1

hθ

(
x(i)
)(

1− hθ

(
x(i)
))

x
(i)
ℓ x

(i)
k Where did the y(i)go?

y(i) ∈ {−1, 1}, plus the fact that
f(x) = hθ(x)(1− hθ(x)) is an even function (f(x) = f(−x)),
so the Hessian doesn’t depend on the training label.

So, the full Hessian H :

H = 1
m

m∑
i=1

h
(

x(i)
)(

1− h
(

x(i)
))

x(i)x(i)T

To show that H is positive semidefinite:

zT Hz

= zT

(
1
m

m∑
i=1

h
(

x(i)
)(

1− h
(

x(i)
))

x(i)x(i)T

)
z

= 1
m

m∑
i=1

h
(

x(i)
)(

1− h
(

x(i)
))

zT x(i)x(i)T z

= 1
m

m∑
i=1

h
(

x(i)
)(

1− h
(

x(i)
))(

zT x(i)
)2
≥ 0, since h

(
x(i)
)(

1− h
(

x(i)
))
∈ [0, 1]

and
(

zT x(i)
)2
≥ 0

b. We have provided two data files:

• http://cs229.stanford.edu/ps/ps1/logistic_x.txt
• http://cs229.stanford.edu/ps/ps1/logistic_y.txt

These files contain the inputs
(
x(i) ∈ R2) and outputs (y(i) ∈ {−1, 1}

)
, respectively, for a binary classification problem, with one

training example per row. Implement Newton’s method for optimizing J(θ), and apply it to fit a logistic regression model to the data.
Initialize Newton’s method with θ = 0⃗ (the vector of all zeros). What are the coefficients θ resulting from your fit? (Remember to
include the intercept term.)

θ =

−2.6205
0.7604
1.1719


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See python notebook ps1-1bc.ipynb.

c. Plot the training data (your axes should be x1 and x2, corresponding to the two coordinates of the inputs, and you should use a
different symbol for each point plotted to indicate whether that example has label 1 or−1). Also plot on the same figure the decision
boundary fit by logistic regression. (This should be a straight line showing the boundary separating the region where hθ(x) > 0.5
from where hθ(x) ≤ 0.5.)

See python notebook ps1-1bc.ipynb.

2. Poisson regression and the exponential family

a. Consider the Poisson distribution parameterized by λ:

p(y; λ) = e−λλy

y!

Show that the Poisson distribution is in the exponential family, and clearly state what b(y), η, T (y), and a(η) are.
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p(y; λ) = e−λλy

y!

= 1
y!

e−λey log λ

= 1
y!

exp (y log λ− λ) exp. form: b(y) exp
(
ηT T (y)− a(η)

)

b(y) = 1
y!

T (y) = y

η = log λ

a(η) = eη

b. Consider performing regression using a GLM model with a Poisson response variable. What is the canonical response function for
the family? (You may use the fact that a Poisson random variable with parameter λ has mean λ.)

g(η) = E [y; η]
= λ

= eη

c. For a training set
{

x(i), y(i); i = 1, . . . , m
}
, let the log-likelihood of an example be log p

(
y(i)|x(i); θ

)
. By taking the derivative

of the log-likelihood w.r.t. θj , derive the stochastic gradient ascent rule for learning using a GLM model with Poisson responses y and
the canonical response function.

p
(

y(i) | x(i); θ
)

= 1
y(i)!

exp
(

ηT y(i) − eη
)

= 1
y(i)!

exp
((

θT x
)T

y(i) − eθT x
)

ℓ(θ) = log
[

1
y(i)!

exp
(

x(i)T θy(i) − ex(i)T θ
)]

= − log
(

y(i)!
)

+ x(i)T θy(i) − ex(i)T θ

∇θℓ(θ) = x(i)T y(i) − x(i)T ex(i)T θ

=
(

y(i) − eθT x(i)
)

x(i)

∴ ∂ℓ(θ)
∂θj

=
(

y(i) − eθT x(i)
)

x
(i)
j

The stochastic gradient ascent update rule:

θ ← θ + α
∂ℓ(θ)
∂θj

θ ← θ + α
(

y(i) − eθT x(i)
)

x
(i)
j

d. Consider using a GLM with a response variable from any member of the exponential family in which T (y) = y, and the canonical
response function h(x) for the family. Show that stochastic gradient ascent on the log-likelihood log p(y⃗|X; θ) results in the update
rule θi ← θi − α(h(x)− y)xi.
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ℓ(θ) = log p(y | x; θ)
= log

[
b(y) exp

(
ηT T (y)− a(η)

)]
response variable in exponential family

= log
[
b(y) exp

(
xθT y − a(η)

)]
η = θT x, T (y) = y

= log [b(y)] + xθT y − a(η)
∂ℓ(θ)
∂θj

= xjy − ∂a(η)
∂η

∂η

∂θj
just the chain rule

= xjy − ∂a(η)
∂η

∂

∂θj

(
θT x

)
= xjy − ∂a(η)

∂η
xj

∂ℓ(θ)
∂θj

=
(

y − ∂a(η)
∂η

)
xj

The stochastic gradient ascent update rule is then:

θi ← θi + α
∂ℓ(θ)
∂θj

θi ← θi + α

(
y − ∂a(η)

∂η

)
xj

θi ← θi − α

(
∂a(η)

∂η
− y

)
xj versus θi ← θi − α (h(x)− y)

The two update rules are equivalent if ∂a(η)
∂η = h(x). Start with the fact that

∫
y

p(y | x; θ)dy = 1, since it is a probability
distribution. ∫

y

p(y | x; θ)dy = 1∫
y

b(y) exp
(
ηT y − a(η)

)
dy = 1∫

y

b(y) exp
(
ηT y

)
dy = exp (a(η))

∂

∂η

∫
y

b(y) exp
(
ηT y

)
dy = ∂

∂η
exp (a(η))∫

y

yb(y) exp
(
ηT y

)
dy = exp (a(η)) ∂a(η)

∂η∫
y

yb(y) exp
(
ηT y − a(η)

)
dy = ∂a(η)

∂η∫
y

y · p(y | x; θ)dy = ∂a(η)
∂η

E [y | x; θ] = ∂a(η)
∂η

h(x) = ∂a(η)
∂η

∴ θi ← θi − α (h(x)− y)
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3. Gaussian discriminant analysis

Suppose we are given a dataset
{(

x(i), y(i)) ; i = 1, . . . , m
}
consisting of m independent examples, where x(i) ∈ Rn are

n-dimensional vectors, and y(i) ∈ {−1, 1}. We will model the joint distribution of (x, y) according to:

p(y) =

{
ϕ if y = 1
1− ϕ if y = −1

p(x | y = −1) = 1
(2π) n

2 |Σ| 12
exp

(
−1

2
(x− µ−1)T Σ−1 (x− µ−1)

)
p(x | y = 1) = 1

(2π) n
2 |Σ| 12

exp
(
−1

2
(x− µ1)T Σ−1 (x− µ1)

)
Here, the parameters of our model are ϕ, Σ, µ−1, µ1. (Note that while there are two different mean vectors µ−1 and µ1, there’s only
one covariance matrix Σ.)

a. Suppose we have already fitϕ,Σ, µ−1, µ1, and now want to make a prediction at some new query point x. Show that the posterior
distribution of the label at x takes the form of a logistic function, and can be written

p(y | x; ϕ, Σ, µ−1, µ1) = 1
1 + exp (−y(θT x + θ0))

,

where θ ∈ Rn and the bias term θ0 ∈ R are some appropriate functions of ϕ, Σ, µ−1, µ1. (Note: the term θ0 corresponds to
introducing an extra coordinate x

(i)
0 = 1.)

6



p(y = 1 | x) = p(x | y = 1)p(y = 1)
p(x)

= p(x | y = 1)p(y = 1)
p(x | y = 1)p(y = 1) + p(x | y = −1)p(y = −1)

=
1

(2π)
n
2 |Σ|

1
2

exp
(
− 1

2 (x− µ1)T Σ−1 (x− µ1)
)

(ϕ)

1
(2π)

n
2 |Σ|

1
2

exp
(
− 1

2 (x− µ1)T Σ−1 (x− µ1)
)

(ϕ) + 1
(2π)

n
2 |Σ|

1
2

exp
(
− 1

2 (x− µ−1)T Σ−1 (x− µ−1)
)

(1− ϕ)

=
ϕ exp

(
− 1

2 (x− µ1)T Σ−1 (x− µ1)
)

ϕ exp
(
− 1

2 (x− µ1)T Σ−1 (x− µ1)
)

+ (1− ϕ) exp
(
− 1

2 (x− µ−1)T Σ−1 (x− µ−1)
)

= 1

1 + (1−ϕ) exp(− 1
2 (x−µ−1)T Σ−1(x−µ−1))

ϕ exp(− 1
2 (x−µ1)T Σ−1(x−µ1))

= 1

1 + exp
(

log
(

(1−ϕ)
ϕ

)
− 1

2 (x− µ−1)T Σ−1 (x− µ−1) + 1
2 (x− µ1)T Σ−1 (x− µ1)

)
= 1

1 + exp
(

log
(

1−ϕ
ϕ

)
− 1

2
(
xT Σ−1x− 2xT Σ−1µ−1 + µT

−1Σ−1µ−1
)

+ 1
2
(
xT Σ−1x− 2xT Σ−1µ1 + µT

1 Σ−1µ1
))

= 1

1 + exp
(

log
(

1−ϕ
ϕ

)
+ xT Σ−1µ−1 − xT Σ−1µ1 − 1

2 µT
−1Σ−1µ−1 + 1

2 µT
1 Σ−1µ1

)
= 1

1 + exp
(

log
(

1−ϕ
ϕ

)
+ xT Σ−1 (µ−1 − µ1)− 1

2 µT
−1Σ−1µ−1 + µT

1 Σ−1µ1

)

Let θ = Σ−1 (µ1 − µ−1), θ0 = 1
2
(
µT

−1Σ−1µ−1 − µT
1 Σ−1µ1

)
. Then,

p(y = 1 | x) = 1
1 + exp (−y(θT x + θ0))

b. For this part of the problem only, you may assume n (the dimension of x) is 1, so that Σ = [σ2] is just a real number, and likewise
the determinant of Σ is given by |Σ| = σ2. Given the dataset, we claim that the maximum likelihood estimates of the parameters are
given by

ϕ = 1
m

m∑
i=1

1
{

y(i) = 1
}

µ−1 =
∑m

i=1 1
{

y(i) = −1
}

x(i)∑m
i=1 1

{
y(i) = −1

}
µ1 =

∑m
i=1 1

{
y(i) = 1

}
x(i)∑m

i=1 1
{

y(i) = 1
}

Σ = 1
m

m∑
i=1

(
x(i) − µy(i)

)(
x(i) − µy(i)

)T

The log-likelihood of the data is

ℓ (ϕ, µ−1, µ1, Σ) = log
m∏

i=1
p(x(i), y(i); ϕ, µ−1, µ1, Σ)

= log
m∏

i=1
p(x(i) | y(i); ϕ, µ−1, µ1, Σ)p(y(i); ϕ).
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By maximizing ℓ w.r.t. the four parameters, prove that the maximum likelihood estimates of ϕ, µ−1, µ1, and Σ are indeed as given in
the formulas above. (You may assume that there is at least one positive and one negative example, so that the denominators in the
definition of µ−1 and µ1 above are non-zero.)

See problem 3c.

c. Without assuming that n = 1, show that the maximum likelihood estimates of ϕ, µ−1, µ1, and Σ are as given in the formulas in
part (b). [Note: If you’re fairly sure that you have the answer to this part right, you don’t have to do part (b), since that’s just a special
case.]

ℓ (ϕ, µ−1, µ1, Σ) = log
m∏

i=1
p(x(i) | y(i); ϕ, µ−1, µ1, Σ)p(y(i); ϕ)

=
m∑

i=1
log p(x(i) | y(i); ϕ, µ−1, µ1, Σ) +

m∑
i=1

log p(y(i); ϕ)

=
m∑

i=1

[
log 1

(2π)
n
2 |Σ| 12

− 1
2

(
x(i) − µy(i)

)T

Σ−1
(

x(i) − µy(i)

)
+ log ϕy(i)

+ log (1− ϕ)(1−y(i))
]

=
m∑

i=1

[
−n

2
log (2π)− 1

2
log|Σ| − 1

2

(
x(i) − µy(i)

)T

Σ−1
(

x(i) − µy(i)

)
+ y(i) log ϕ +

(
1− y(i)

)
log (1− ϕ)

]
− n

2
log (2π) is constant w.r.t. the parameters, so can be dropped for finding MLE.

≃
m∑

i=1

[
−1

2
log|Σ| − 1

2

(
x(i) − µy(i)

)T

Σ−1
(

x(i) − µy(i)

)
+ y(i) log ϕ +

(
1− y(i)

)
log (1− ϕ)

]

∇ϕℓ (ϕ, µ−1, µ1, Σ) =
m∑

i=1

[
y(i)

ϕ
− 1− y(i)

1− ϕ

]

Note: why does
m∑

i=1
y(i) =

m∑
i=1

1
{

y(i) = 1
}

...?

=
∑m

i=1 1
{

y(i) = 1
}

ϕ
−

m−
∑m

i=1 1
{

y(i) = 1
}

1− ϕ
= 0 let A =

m∑
i=1

1
{

y(i) = 1
}

A

ϕ
= m−A

1− ϕ

A− ϕA = ϕm− ϕA

A = ϕm

ϕ = A

m

ϕ = 1
m

m∑
i=1

1
{

y(i) = 1
}
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∇µ−1ℓ (ϕ, µ−1, µ1, Σ) = −1
2

∑
i:y(i)=−1

∇µ−1

[
−2µT

−1Σ−1x(i) + µT
−1Σ−1µ−1

]
x(i)T Σx(i) is dropped as it isn’t a function of µ−1

= −1
2

∑
i:y(i)=−1

[
−2Σ−1x(i) + 2Σ−1µ−1

]
= 0

0 =
∑

i:y(i)=−1

[
Σ−1x(i) − Σ−1µ−1

]

0 =
m∑

i=1
1
{

y(i) = −1
}

Σ−1x(i) −
m∑

i=1
1
{

y(i) = −1
}

Σ−1µ−1

Σ−1µ−1

m∑
i=1

1
{

y(i) = −1
}

= Σ−1
m∑

i=1
1
{

y(i) = −1
}

x(i)

µ−1 =
∑m

i=1 1
{

y(i) = −1
}

x(i)∑m
i=1 1

{
y(i) = −1

} similarly, µ1 =
∑m

i=1 1
{

y(i) = 1
}

x(i)∑m
i=1 1

{
y(i) = 1

}
Let S = Σ−1. The maximum likelihood estimate of S is equivalent to the MLE of Σ.

∇Sℓ (ϕ, µ−1, µ1, Σ) = −1
2

m∑
i=1
∇Σ

[
− log|S|+

(
x(i) − µy(i)

)T

S
(

x(i) − µy(i)

)]

= −1
2

m∑
i=1

[
−S−1 +

(
x(i) − µy(i)

)(
x(i) − µy(i)

)T
]

=
m∑

i=1

1
2

Σ− 1
2

m∑
i=1

(
x(i) − µy(i)

)(
x(i) − µy(i)

)T

= 0

1
2

mΣ = 1
2

m∑
i=1

(
x(i) − µy(i)

)(
x(i) − µy(i)

)T

Σ = 1
m

m∑
i=1

(
x(i) − µy(i)

)(
x(i) − µy(i)

)T

4. Linear invariance of optimization algorithms

Consider using an iterative optimization algorithm (such as Newton’s method, or gradient descent) to minimize some continuously
differentiable function f(x). Suppose we initialize the algorithm at x(0) = 0⃗. when the algorithm is run, it will produce a value of
x ∈ Rn for each iteration: x(1), x(2), . . ..

Now, let some non-singular square matrix A ∈ Rn×n be given, and define a new function g(z) = f(Az). Consider using the
same iterative optimization algorithm to optimize g (with initialization z(0) = 0⃗). If the values z(1), z(2), . . . produced by this method
necessarily satisfy z(i) = A−1x(i) for all i, we say this optimization algorithm is invariant to linear reparameterizations.

a. Show that Newton’s method (applied to find the minimum of a function) is invariant to linear reparameterizations. Note that since
z(0) = 0⃗ = A−1x(0), it is sufficient to show that if Newton’s method applied to f(x) updates x(i) to x(i+1), then Newton’s method
applied to g(z) will update z(i) = A−1x(i) to z(i+1) = A−1x(i+1).

For Newton’s method, need the gradient∇zg(z) and the Hessian∇2
zg(z). Start with the gradient. I got confused as hell without
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keeping track of the dimensions of everything:

∇zg(z) ∈ Rn gradient wrt z ∈ Rn is also ∈ Rn

∂g

∂zi
∈ R each component of∇zg(z) is ∈ R

∂f(Az)
∂(Az)

∈ Rn derivative of f ∈ R wrt Az ∈ Rn

∂(Az)
∂zi

∈ Rn derivative of Az ∈ Rn wrt zi ∈ R

∇zg(z) =


∂g(z)
∂z1

∂g(z)
∂z2
...

∂g(z)
∂zn

 =



[
∂(Az)

∂z1

]T [
∂f(Az)
∂(Az)

]
[

∂(Az)
∂z2

]T [
∂f(Az)
∂(Az)

]
...[

∂(Az)
∂zn

]T [
∂f(Az)
∂(Az)

]


by the chain rule

=



[
− aT

1 −
] [∂f(Az)

∂(Az)

]
[
− aT

2 −
] [∂f(Az)

∂(Az)

]
...[

− aT
n −

] [∂f(Az)
∂(Az)

]

 =


− aT

1 −
− aT

2 −
...

− aT
n −


[

∂f(Az)
∂ (Az)

]
= AT∇xf(Az),

where the fact that
∂(Az)

∂zi
= ai (the i-th column of A) by:

Az =

 |a1
|

 z1 +

 |a2
|

 z2 + · · ·+

 |an

|

 zn

∂

∂zi
Az =

 |ai

|


Now for the Hessian, starting again with the dimensions of everything in order to be slightly less confused:

∇2
zg(z) ∈ Rn×n Hessian wrt z ∈ Rn

(∇zg(z))i ∈ R i-th component of the gradient is ∈ R
∇z(∇zg(z))i ∈ Rn gradient wrt z ∈ Rn
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∇2
zg(z) =


∂2g(z)

∂z2
1

∂2g(z)
∂z1∂z2

· · · ∂2g(z)
∂z1∂zn

∂2g(z)
∂z2∂z1

∂2g(z)
∂z2

2
· · · ∂2g(z)

∂z2∂zn

...
...

. . .
...

∂2g(z)
∂zn∂z1

∂2g(z)
∂zn∂z2

· · · ∂2g(z)
∂z2

n



=


∂2f(Az)
∂(Az)2

∂(Az)
∂z1

∂(Az)
∂z1

∂2f(Az)
∂(Az)2

∂(Az)
∂z1

∂(Az)
∂z2

· · · ∂2f(Az)
∂(Az)2

∂(Az)
∂z1

∂(Az)
∂zn

∂2f(Az)
∂(Az)2

∂(Az)
∂z2

∂(Az)
∂z1

∂2f(Az)
∂(Az)2

∂(Az)
∂z2

∂(Az)
∂z2

· · · ∂2f(Az)
∂(Az)2

∂(Az)
∂z2

∂(Az)
∂zn

...
...

. . .
...

∂2f(Az)
∂(Az)2

∂(Az)
∂zn

∂(Az)
∂z1

∂2f(Az)
∂(Az)2

∂(Az)
∂zn

∂(Az)
∂z2

· · · ∂2f(Az)
∂(Az)2

∂(Az)
∂zn

∂(Az)
∂zn

 chain rule – is this legit?

=


− aT

1 −
− aT

2 −
...

− aT
n −




∂2f(x)
∂x2

1

∂2f(x)
∂x1∂x2

· · · ∂2f(x)
∂x1∂xn

∂2f(x)
∂x2∂x1

∂2f(x)
∂x2

2
· · · ∂2f(x)

∂x2∂xn

...
...

. . .
...

∂2f(x)
∂xn∂x1

∂2f(x)
∂xn∂x2

· · · ∂2f(x)
∂x2

n


 | | |

a1 a2 · · · a3
| | |



= AT
[
∇2

xf(x)
]

A

So, the update rule for Newton’s method:

z(i+1) = z(i) −Hg

(
z(i)
)−1
∇zg(z(i))

= z(i) −
(

AT Hf

(
Az(i)

)
A
)−1

AT∇xf
(

Az(i)
)

= z(i) −A−1Hf

(
Az(i)

)−1 (
AT
)−1

AT∇xf
(

Az(i)
)

= z(i) −A−1Hf

(
Az(i)

)−1
∇xf

(
Az(i)

)
Az(i+1) = A

(
z(i) −A−1Hf

(
Az(i)

)−1
∇xf

(
Az(i)

))
= Az(i) −Hf

(
Az(i)

)−1
∇xf

(
Az(i)

)
= x(i) −Hf

(
x(i)
)−1
∇xf

(
Az(i)

)
= x(i+1)

b. Is gradient descent invariant to linear reparameterizations? Justify your answer. The update rule:

z(i+1) = z(i) − αAT∇xf
(

Az(i)
)

Az(i+1) = Az(i) − αAAT∇xf
(

Az(i)
)

= x(i) − αAAT∇xf
(

Az(i)
)

vs. x(i+1) = x(i) − α∇xf
(

x(i)
)

∴, gradient descent is invariant to linear reparameterizations only if
AAT = I , i.e. if A is an orthogonal matrix.
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5. Regression for denoising quasar spectra

Introduction. In this problem, we will apply a supervised learning technique to estimate the light spectrum of quasars. Quasars are
luminous distant galactic nuclei that are so bright, their light overwhelms that of stars in their galaxies. Understanding properties of
the spectrum of light emitted by a quasar is useful for a number of tasks: first, a number of quasar properties can be estimated from
the spectra, and second, properties of the regions of the universe through which the light passes can also be evaluated (for example,
we can estimate the density of neutral and ionized particles in the universe, which helps cosmologists understand the evolution and
fundamental laws governing its structure). The light spectrum is a curve that relates the light’s intensity (formally, lumens per square
meter), or luminous flux, to its wavelength. Figure 1 shows an example of a quasar light spectrum, where thewavelengths aremeasured
in Angstroms (

◦
A), where 1

◦
A = 10−10 meters.

The Lyman-α wavelength is a wavelength beyond which intervening particles at most negligibly interfere with light emitted from the
quasar. (Interference generally occurs when a photon is absorbed by a neutral hydrogen atom, which only occurs for certain wave-
lengths of light.) For wavelengths greater than this Lyman-αwavelength, the observed light spectrum fobs can bemodeled as a smooth
spectrum f plus noise:

fobs(λ) = f(λ) = noise(λ)

For wavelengths below the Lyman-α wavelength, a region of the spectrum known as the Lyman-α forest, intervening matter causes
attenuation of the observed signal. As light emitted by the quasar travels through regions of the universe richer in neutral hydrogen,
some of it is absorbed, which we model as

fobs(λ) = absorption(λ) · f(λ) + noise(λ)

Astrophysicists and cosmologists wish to understand the absorption function, which gives information about the Lyman-α forest, and
hence the distribution of neutral hydrogen in otherwise unreachable regions of the universe. This gives clues toward the formation and
evolution of the universe. Thus, it is our goal to estimate the spectrum f of an observed quasar.

Getting the data. We will be using data generated from the Hubble Space Telescope Faint Object Spectrograph (HST-FOS), Spectra
of Active Galactic Nuclei and Quasars. We have provided two comma-separated data files located at:

• Training set: http://cs229.stanford.edu/ps/ps1/quasar_train.csv
• Test set: http://cs229.stanford.edu/ps/ps1/quasar_test.csv

Each file contains a single header row containing 450 numbers corresponding integral wavelengths in the interval [1150; 1600]
◦
A. The

remaining lines contain relative flux measurements for each wavelength. Specifically, quasar_train.csv contains 200 examples
and quasar_test.csv contains 50 examples. You may use the helper file load_quasar_data.m to load the data in Matlab:
http://cs229.stanford.edu/ps/ps1/load_quasar_data.m

a. Locally weighted linear regression

Consider a linear regression problem in which we want to “weight” different training examples differently. Specifically, suppose we
want to minimize

J(θ) = 1
2

m∑
i=1

w(i)
(

θT x(i) − y(i)
)2

In class, we worked out what happens for the case where all the weights w(i) are the same. In this problem, we will generalize some
of those ideas to the weighted setting.

i. Show that J(θ) can also be written
J(θ) = (Xθ − y⃗)T

W (Xθ − y⃗)

for an appropriate diagonal matrix W , and where X and y⃗ are as defined in class. State clearly what W is.

W ∈ Rn×n is a diagonal matrix, with Wii = 1
2 w(i).

ii. If all the w(i)’s equal 1, then we saw in class that the normal equation is

XT Xθ = XT y⃗,
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and that the value of θ that minimizes J(θ) is given by
(
XT X

)−1
XT y⃗. By finding the derivative∇θJ(θ) and setting that to zero,

generalize the normal equation to this weighted setting, and give the new value of θ that minimizes J(θ) in closed form as a function
of X , W , and y⃗.

J(θ) = (Xθ − y)T
W (Xθ − y)

∇θ = ∇θ

[
(Xθ)T

WXθ − (Xθ)T
Wy − yT WXθ + yT Wy

]
= ∇θ

[
θT XT WXθ − θT XT Wy − yT WXθ

]
right two terms are equal scalars

= ∇θ

[
θT XT WXθ − 2XT Wy

]
= 2XT WXθ − 2XT Wy = 0 normal equation (weighted)

XT WXθ = XT Wy

θ =
(
XT WX

)−1
XT Wy

iii. Suppose we have a training set
{

x(i), y(i); i = 1, . . . , m
}
of m independent examples, but in which the y(i)’s were observed

with differing variances. Specifically, suppose that

p
(

y(i) | x(i); θ
)

= 1√
2πσ(i)

exp

(
−
(
y(i) − θT x(i))2

2
(
σ(i)
)2

)

I.e., y(i) has mean θT x(i) and variance
(
σ(i))2 (where the σ(i)’s are fixed, known, constants). Show that finding the maximum

likelihood estimate of θ reduces to solving a weighted linear regression problem. State clearly what the w(i)’s are in terms of the
σ(i)’s.

arg max
θ

L(θ) = arg max
θ

m∏
i=1

p
(

y(i) | x(i); θ
)

= arg max
θ

m∏
i=1

1√
2πσ(i)

exp

(
−
(
y(i) − θT x(i))2

2
(
σ(i)
)2

)

= arg max
θ
−1

2

m∑
i=1

1(
σ(i)
)2

(
y(i) − θT x(i)

)2

= arg min
θ

1
2

m∑
i=1

w(i)
(

y(i) − θT x(i)
)2

∴ arg max
θ

L(θ) = arg min
θ

J(θ) where w(i) = 1(
σ(i)
)2

Maximizing the log-likelihood ℓ(θ)w.r.t. θ amounts to minimizing the right term. Comparing this termwith the loss function for weighted
linear regression:

max likelihood vs. loss function

1
2

m∑
i=1

1(
σ(i)
)2

(
θT x(i) − y(i)

)2
vs.

1
2

m∑
i=1

w(i)
(

θT x(i) − y(i)
)2

∴ finding the MLE estimate of θ is equivalent to solving weighted linear regression, where

w(i) = 1(
σ(i)
)2

b. Visualizing the data
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i. Use the normal equations to implement (unweighted) linear regression (y = θT x) on the first training example (i.e. first non-header
row). On one figure, plot both the raw data and the straight line resulting from your fit. State the optimal θ resulting from the linear
regression.

θ =
[

2.513
−9.811× 10−4

]

ii. Implement locally weighted linear regression on the first training example. Use the normal equations you derived in part (a)(ii). On
a different figure, plot both the raw data and the smooth curve resulting from your fit. When evaluating h(·) at a query point x, use
weights

w(i) = exp

(
−
(
x− x(i))2

2τ2

)
,

with bandwidth parameter τ = 5.
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iii. Repeat (b)(ii) four more times with τ = 1, 10, 100 and 1000. Plot the resulting curves. You can submit one plot with all four τ
values or submit four separate plots. If you submit one plot, make sure all curves are visible. Additionally, in 2-3 sentences, comment
on what happens to the locally weighted linear regression line as τ varies.

For large τ , the regression line approaches the global (unweighted) linear regression line. As τ decreases, the regression line better
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fits the local structure of the data; however, if τ is too small, the regression line starts overfitting the training data. In other words, there
is a bias-variance trade-off where as τ decreases, bias decreases but variance increases.

c. Predicting quasar spectra with functional regression

We now go a step beyond what we have covered explicitly in class, and we wish to predict an entire part of a spectrum (a curve) from
noisy observed data. We begin by supposing that we observe a random sample of m absorption-free spectra, which is possible for
quasars very close (in a sense relative to the size of the universe!) to Earth. For a given spectrum f , define fright to be the spectrum to
the right of the Lyman-α line. Let fleft be the spectrum within the Lyman-α forest region, that is, for lower wavelengths. To make the
results cleaner, we define:

f(λ) =

{
fleft(λ) if λ < 1200
fright(λ) if λ ≥ 1300

We will learn a function r (for regression) that maps an observed fright to an unobserved target fleft. This is useful in practice because
we observe fright with only random noise: there is no systematic absorption, which we cannot observe directly, because hydrogen
does not absorb photons with higher wavelengths. By predicting fleft from a noisy version of fright, we can estimate the unobservable
spectrum of a quasar as well as the absorption function. Imaging systems collect data of the form

fobs = absorption(λ) · f(λ) + noise(λ)

for λ ∈ {λ1, . . . , λn}, a finite number of points λ, because they must quantize the information. That is, even in the quasars-close-
to-Earth training data, our observations of fleft and fright consist of noisy evaluations of the true spectrum f at multiple wavelengths. In
our case, we have n = 450 and λ1 = 1150, . . . , λn = 1599.

We formulate the functional regression task as the goal of learning the function r mapping fleft to fright:

r(fright)(λ) = E (fleft | fright) (λ)

for λ in the Lyman-α forest.

i. First, we must smooth the data in the training dataset to make it more useful for prediction. For each i = 1, . . . , m, define f (i) (λ)
to be the weighted linear regression estimate of the ith spectrum. Use your code from part (b)(ii) above to smooth all spectra in the
training set using τ = 5. Do the same for the test set. We will now operate on these smoothed spectra.

See python notebook ps1-5bc.ipynb.

ii. Using your estimated regression functions f (i) for i = 1, . . . , m, we now wish to estimate the unobserved spectrum fleft of a
quasar from its (noisy) observed spectrum fright. To do so, we perform a weighted regression of the locally weighted regressions. In
particular, given a new noisy spectrum observation:

fobs(λ) = f(λ) + noise(λ) for λ ∈ {1300, . . . , 1599}

We define a metric d which takes as input, two spectra f1 and f2, and outputs a scalar:

d (f1, f2) =
∑

i

(f1 (λi)− f2 (λi))2
.

The metric d computes squared distance between the new datapoint and previous datapoints. If f1 and f2 are right spectra, then we
take the preceding sum only over λ ∈ {1300, . . . , 1599}, rather than the entire spectrum.

Based on this distance function, we may define the nonparametric functional regression estimator, which is a locally weighted sum
of functions fleft from the training data (this is like locally weighted linear regression, except that instead of predicting y ∈ R we
predict a function fleft). Specifically, let fright denote the right side of a spectrum, which we have smoothed using locally weighted linear
regression (as you were told to do in the previous part of the problem). We wish to estimate the associated left spectrum fleft. Define
the function ker(t) = max {1− t, 0} and let neighbk (fright) denote the k indices i ∈ {1, 2, . . . , m} that are closest to fright i.e.

d
(

f
(i)
right, fright

)
< d

(
f

(j)
right, fright

)
for all i ∈ neighbk (fright) , j /∈ neighbk (fright)

and neighbk (fright) contains exactly k indices. In addition, let

h := max
i∈{1,...,m}

d
(

f
(i)
right, fright

)
.
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Then define the estimated function f̂left : R→ R by

f̂left =

∑
i∈neighbk(fright) ker

(
d
(

f
(i)
right ,fright

)
h

)
f

(i)
left (λ)

∑
i∈neighbk(fright) ker

(
d
(

f
(i)
right ,fright

)
h

) .

Recall that f (i)
right is the smoothed (weighted linear regression) estimate of the ith training spectrum.

Construct the functional regression estimate (1) for each spectrum in the entire training set using k = 3 nearest neighbors: for each
j = 1, . . . , m, construct the estimator f̂left from (1) using fright = f

(j)
right. Then compute the error d

(
f

(i)
left , f̂left

)
between the true

spectrum f
(j)
left and your estimated spectrum f̂left for each j, and return the average over the training data. What is your average

training error?

Training set error: 1.0664

See python notebook ps1-5bc.ipynb.

iii. Perform functional regression on the test set using the same procedure as in the previous subquestion. What is your average test
error? For test examples 1 and 6, include a plot with both the entire smooth spectrum and the fitted curve f̂left curve on the same graph.
You should submit two plots: one for test example 1 and one for test example 6.

Test set error: 2.7100
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See python notebook ps1-5bc.ipynb.
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