# CS229 problem set 0 

James Chuang

January 19, 2017

## Contents

1. Gradients and Hessians ..... 1
2. Positive definite matrices ..... 2
3. Eigenvectors, eigenvalues, and the spectral theorem ..... 2

My solutions to the CS229 problem set \#0 from fall 2016. The official solutions are available there as well.

## 1. Gradients and Hessians

Recall that a matrix $A \in \mathbb{R}^{n \times n}$ is symmetric if $A^{T}=A$, i.e. $A_{i j}=A_{j i} \forall i, j$. Also recall the gradient $\nabla_{x} f(x)$ of a function $f: \mathbb{R}^{n} \mapsto \mathbb{R}$, which is the $n$-vector of partial derivatives

$$
\nabla_{x} f(x)=\left[\begin{array}{c}
\frac{\partial}{\partial x_{1}} f(x) \\
\vdots \\
\frac{\partial}{\partial x_{n}} f(x)
\end{array}\right] \quad \text { where } x=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] .
$$

The Hessian $\nabla^{2} f(x)$ of a function $f: \mathbb{R} \mapsto \mathbb{R}$ is the $n \times n$ symmetric matrix of second partial derivatives,

$$
\nabla^{2} f(x)=\left[\begin{array}{cccc}
\frac{\partial^{2}}{\partial x_{1}^{2}} f(x) & \frac{\partial^{2}}{\partial x_{1} \partial x_{2}} f(x) & \cdots & \frac{\partial^{2}}{\partial x_{1} \partial x_{n}} f(x) \\
\frac{\partial}{\partial x_{2} \partial x_{1}} f(x) & \frac{\partial^{2}}{\partial x_{2}^{2}} f(x) & \cdots & \frac{\partial^{2}}{\partial x_{2} \partial x_{n}} f(x) \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2}}{\partial x_{n} \partial x_{1}} f(x) & \frac{\partial^{2}}{\partial x_{n} \partial x_{2}} f(x) & \cdots & \frac{\partial^{2}}{\partial x_{n}^{2}} f(x)
\end{array}\right]
$$

a. Let $f(x)=\frac{1}{2} x^{T} A x+b^{T} x$, where $A$ is a symmetric matrix and $b \in \mathbb{R}^{n}$ is a vector. What is $\nabla_{x} f(x)$ ?

$$
\begin{aligned}
f(x) & =\frac{1}{2} x^{T} A x+b^{T} x \\
\nabla_{x} f(x) & =\frac{1}{2} 2 A x+b \quad \text { see linalg review } 4.3 \\
\nabla_{x} f(x) & =A x+b
\end{aligned}
$$

b. Let $f(x)=g(h(x))$, where $g: \mathbb{R} \mapsto \mathbb{R}$ is differentiable and $h: \mathbb{R}^{n} \mapsto \mathbb{R}$ is differentiable. What is $\nabla_{x} f(x)$ ?

$$
\begin{aligned}
f(x) & =g(h(x)) \\
\nabla_{x} f(x) & =g^{\prime}(h(x)) \nabla_{x} f(x) \quad \text { by the chain rule }
\end{aligned}
$$

c. Let $f(x)=\frac{1}{2} x^{T} A x+b^{T} x$, where $A$ is symmetric and $b \in \mathbb{R}^{n}$ is a vector. What is $\nabla_{x}^{2} f(x)$ ?

$$
\begin{array}{rlr}
f(x) & =\frac{1}{2} x^{T} A x+b^{T} x \\
\nabla_{x}^{2} f(x) & =\frac{1}{2} 2 A \quad \text { see linalg review } 4.3 \\
\nabla_{x}^{2} f(x) & =A
\end{array}
$$

d. Let $f(x)=g\left(a^{T} x\right)$, where $g: \mathbb{R} \mapsto \mathbb{R}$ is continuously differentiable and $a \in \mathbb{R}^{n}$ is a vector. What are $\nabla f(x)$ and $\nabla^{2} f(x)$ ? (Hint: your expression for $\nabla^{2} f(x)$ may have as few as 11 symbols, including ' and parentheses.)

$$
\begin{array}{rlr}
f(x) & =g\left(a^{T} x\right) \\
\nabla_{x} f(x) & =g^{\prime}\left(a^{T} x\right) a & \text { chain rule } \\
\nabla_{x}^{2} f(x) & =g^{\prime \prime}\left(a^{T} x\right) a a^{T} & \text { chain rule again }
\end{array}
$$

## 2. Positive definite matrices

A matrix $A \in \mathbb{R}^{n \times n}$ is positive semi-definite (PSD), denoted $A \succeq 0$, if $A=A^{T}$ and $x^{T} A x \geq 0, \forall x \in \mathbb{R}^{n}$. A matrix $A$ is positive definite (PD), denoted $A \succ 0$, if $A=A^{T}$ and $x^{T} A X>0, \forall x \neq 0$, i.e., all non-zero vectors $x$. The simplest example of a positive definite matrix is the identity matrix $I$, which satisfies $x^{T} I x=\|x\|_{2}^{2}=\sum_{i=1}^{n} x_{i}^{2}$.
a. Let $z \in \mathbb{R}^{n}$ be an $n$-vector. Show that $A=z z^{T}$ is positive semidefinite.

$$
\begin{aligned}
x^{T} A x & =x^{T} z z^{T} x \\
& =\left(x^{T} z\right)^{2} \geq 0 \quad \text { by commutativity of dot product }
\end{aligned}
$$

b. Let $z \in \mathbb{R}^{n}$ be a non-zero $n$-vector. Let $A=z z^{T}$. What is the null-space of $A$ ? What is the rank of $A$ ? The null-space of $A$ is all $x \in \mathbb{R}^{n}$ such that $A x=0$ :

$$
\begin{aligned}
A x & =0 \\
z z^{T} x & =0 \quad \text { since } z \text { is non-zero, } \\
z^{T} x & =0
\end{aligned}
$$

I.e., $x$ is in the nullspace of $A$ if it is orthogonal to $z$, so the nullity (dimension of the nullspace) is $n-1$ (where the one missing dimension is the one occupied by $z$ ).

The rank-nullity theorem states (for $A \in \mathbb{R}^{m \times n}$ ):

$$
\begin{aligned}
\operatorname{rank}(A)+\operatorname{nul}(A) & =n \\
\operatorname{rank}(A)+(n-1) & =n \\
\operatorname{rank}(A) & =1
\end{aligned}
$$

c. Let $A \in \mathbb{R}^{n}$ be positive semidefinite and $B \in \mathbb{R}^{m \times n}$ be arbitrary, where $m, n \in \mathbb{N}$. Is $B A B^{T}$ PSD? If so, prove it. If note, give a counterexample with explicit $A, B$.

$$
\begin{aligned}
& B A B^{T} \text { is PSD if } x^{T} B A B^{T} x \geq 0 \forall x \in \mathbb{R}^{m}: \\
& x^{T} B A B^{T} x \\
&=\left(x^{T} B\right) A\left(B^{T} x\right) \\
&=\left(B^{T} x\right)^{T} A\left(B^{T} x\right) \\
&= z^{T} A z \geq 0 \quad \text { where } z=B^{T} x \in \mathbb{R}^{n}, \text { and since } A \text { is PSD }
\end{aligned}
$$

## 3. Eigenvectors, eigenvalues, and the spectral theorem

The eigenvalues of an $n \times n$ matrix $A \in \mathbb{R}^{n \times n}$ are the roots of the characteristic polynomial $p_{A}(\lambda)=\operatorname{det}(\lambda I-A)$, which may (in general) be complex. They are also defined as the values $\lambda \in \mathbb{C}$ for which there exists a vector $x \in \mathbb{C}^{n}$ such that $A x=\lambda x$. We
call such a pair $(x, \lambda)$ an eigenvector, eigenvalue pair. In this question, we use the notation diag $\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ to denote the diagonal matrix with diagonal entries $\lambda_{1}, \ldots, \lambda_{n}$, i.e.,

$$
\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right]
$$

a. Suppose that the matrix $A \in \mathbb{R}^{n \times n}$ is diagonalizable, i.e. $A=T \Lambda T^{-1}$ for an invertible matrix $T \in \mathbb{R}^{n \times n}$, where $\Lambda=$ $\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. Use the notation $t^{(i)}$ for the columns of $T$, so that $T=\left[\begin{array}{lll}t^{(1)} & \ldots & t^{(n)}\end{array}\right]$, where $t^{(i)} \in \mathbb{R}^{n}$. Show that $A t^{(i)}=\lambda_{i} t^{(i)}$, so that the eigenvalue/eigenvector pairs of $A$ are $\left(t^{(i)}, \lambda_{i}\right)$.

$$
\begin{aligned}
& A=T \Lambda T^{-1} \\
& A T=T \Lambda \\
& A\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
t^{(1)} & t^{(2)} & \cdots & t^{(n)} \\
\mid & \mid & & \mid
\end{array}\right]=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
t^{(1)} & t^{(2)} & \cdots & t^{(n)} \\
\mid & \mid & & \mid
\end{array}\right]\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right] \\
& {\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
A t^{(1)} & A t^{(2)} & \cdots & A t^{(n)} \\
\mid & \mid & & \mid
\end{array}\right]=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\lambda_{1} t^{(1)} & \lambda_{2} t^{(2)} & \cdots & \lambda_{n} t^{(n)} \\
\mid & \mid & & \mid
\end{array}\right]} \\
& \therefore A t^{(i)}=\lambda_{i} t^{(i)}, \quad i \in\{1,2, \ldots, n\}
\end{aligned}
$$

A matrix $U \in \mathbb{R}^{n \times n}$ is orthogonal if $U^{T} U=I$. The spectral theorem, perhaps one of the most important theorems in linear algebra, states that if $A \in \mathbb{R}^{n \times n}$ is symmetric, i.e. $A=A^{T}$, then $A$ is diagonalizable by a real orthogonal matrix. I.e., there are a diagonal matrix $\Lambda \in \mathbb{R}^{n \times n}$ and orthogonal matrix $U \in \mathbb{R}^{n \times n}$ such that $U^{T} A U=\Lambda$, or, equivalently,

$$
A=U \Lambda U^{T}
$$

Let $\lambda_{i}=\lambda_{i}(A)$ denote the $i$ th eigenvalue of $A$.
b. Let $A$ be symmetric. Show that if $U=\left[\begin{array}{lll}u^{(1)} & \cdots & u^{(n)}\end{array}\right]$ is orthogonal, where $u^{(i)} \in \mathbb{R}^{n}$ and $A=U \Lambda U^{T}$, then $u^{(i)}$ is an eigenvector of $A$ and $A u^{(i)}=\lambda_{i} u^{(i)}$, where $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$.

$$
\begin{aligned}
& A=U \Lambda U^{T} \\
& A U=U \Lambda \\
& A\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
u^{(1)} & u^{(2)} & \cdots & u^{(n)} \\
\mid & \mid & & \mid
\end{array}\right]=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
u^{(1)} & u^{(2)} & \cdots & u^{(n)} \\
\mid & \mid & & \mid
\end{array}\right]\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right] \\
& {\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
A u^{(1)} & A u^{(2)} & \cdots & A u^{(n)} \\
\mid & \mid & & \mid
\end{array}\right]=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\lambda_{1} u^{(1)} & \lambda_{2} u^{(2)} & \cdots & \lambda_{n} u^{(n)} \\
\mid & \mid & & \mid
\end{array}\right]} \\
& \therefore A u^{(i)}=\lambda_{i} u^{(i)} \quad i \in\{1,2, \ldots, n\}
\end{aligned}
$$

c. Show that if $A$ is PSD, then $\lambda_{i}(A) \geq 0$ for each $i$.

$$
\begin{aligned}
A t^{(i)}= & \lambda_{i} t^{(i)} \\
t^{(i)^{T}} A t^{(i)}= & t^{(i)^{T}} \lambda_{i} t^{(i)} \\
= & \lambda_{i} t^{(i)^{T}} t^{(i)} \geq 0 \quad A \text { is PSD } \\
& \lambda_{i} \geq \frac{0}{t^{(i)^{T}} t^{(i)}} \\
& \lambda_{i} \geq 0
\end{aligned}
$$

