CS229 lecture 4 notes

James Chuang

May 1, 2017

Contents

Learning Theory																		
1. Bias/variance tradeoff	 	 												 		 		
2. Preliminaries	 	 												 		 		
3. The case of finite ${\cal H}$.	 	 		 										 		 		
4. The case of infinite ${\cal H}$	 	 		 										 		 		

My notes on Andrew Ng's CS229 lecture 4 notes.

Learning Theory

1. Bias/variance tradeoff

- also see ESL Ch 2.9 and Ch 7
- is a more complex/flexible/high-capacity model better than a simple/inflexible/low-capacity model?
- some informal definitions:
 - generalization error: the expected error on samples not necessarily in the training set
 - bias: the expected generalization error even if a model were fit to a very (infinitely) large training set
 high bias corresponds with underfitting: i.e. failing to capture structure exhibited by the data
 - *variance*: how much the generalization error is expected to change if the training set changes
 - high variance corresponds with *overfitting*: i.e. fitting to the noise in the training set
 - there is a *bias-variance tradeoff*:
 - a simple/inflexible/low-capacity model with few parameters may have large bias (but smaller variance)
 - a complex/flexible/high-capacity model with many parameters may have large variance (but smaller bias)

2. Preliminaries

- things we want to do:
 - 1. make the bias/variance tradeoff formal
 - this will lead to model selection methods, e.g. for choosing what order polynomial to fit to a training set
 - 2. relate error on the training set to generalization error
 - we care about generalization error, but we train models on training sets
 - 3. find conditions under which we can prove that learning algorithms will work well?
- two simple but useful lemmas:
 - the union bound
 - Let A_1, A_2, \ldots, A_k be k different (not necessarily independent) events. Then,

$$P(A_1 \cup \cdots \cup A_k) \le P(A_1) + \cdots + P(A_k).$$

- in words, the probability of any one of k events happening is at most the sums of the probabilities of the k different events
- Hoeffding inequality aka the Chernoff bound in learning theory
 - Let Z_1, \ldots, Z_m be m i.i.d. random variables drawn from a Bernoulli(ϕ) distribution, i.e.

$$P(Z_i = 1) = \phi$$
 and $P(Z_i = 0) = 1 - \phi$

- Let $\hat{\phi} = \frac{1}{m} \sum_{i=1}^{m} Z_i$ be the mean of these random variables Let any $\gamma > 0$ be fixed. Then,

$$P\left(\left|\phi - \hat{\phi}\right| > \gamma\right) \le 2\exp\left(-2\gamma^2 m\right)$$

- in words, if we take $\hat{\phi}$ the average of m Bernoulli(ϕ) random variables to be our estimate of ϕ , then the probability of our being far from the true value is small, so long as m is large
 - note that this only applies to the case of mBernoulli random variables described here: the more general Hoeffding inequality is described in the supplemental notes
- in other words, if you have a biased coin whose chance of landing on heads is ϕ , then if you toss it m times and calculate the fraction of time that it came up heads, that will be a good estimate of ϕ with high probability (if m is large)
- first, restrict attention to binary classification with labels $y \in \{0, 1\}$
 - · note that everything here generalizes to other problems, including regression and multi-class classification
 - assume a training set $S = \{(x^{(i)}, y^{(i)}) : i = 1, \dots, m\}$ of size m, where the training examples $(x^{(i)}, y^{(i)})$ are drawn i.i.d. from some probability distribution \mathcal{D}
 - for a hypothesis h, define the training error (aka the empirical risk or empirical error in learning theory):

$$\hat{\mathcal{E}}(h) = \frac{1}{m} \sum_{i=1}^{m} \mathbb{1}\left\{h\left(x^{(i)}\right) \neq y^{(i)}\right\}$$

- i.e., the fraction of training examples that h misclassifies
 - when we want to make clear the dependence of $\hat{\mathcal{E}}(h)$ on the training set S, we can write it $\hat{\mathcal{E}}_{S}(h)$
- define the generalization error to be:

$$\mathcal{E}(h) = P_{(x,y)\sim\mathcal{D}}\left(h(x) \neq y\right)$$

- i.e., the probability that, if we draw a new example (x, y) from the distribution \mathcal{D} , it will be misclassified by h
 - note the assumption that the training data are drawn from the same distribution $\mathcal D$ with which the hypothesis is evaluated
 - this is sometimes referred to as one of the PAC (probably approximately correct) assumptions
- consider the setting of linear classification
 - let $h_{\theta}(x) = 1 \{ \theta^T x \ge 0 \}$
 - what's a reasonable way of fitting the parameters θ ?
 - one approach: minimize the training error by picking:

$$\hat{\theta} = \arg\min_{\theta} \hat{\mathcal{E}} \left(h_{\theta} \right)$$

- this is called empirical risk minimization (ERM)
 - the resulting hypothesis output by the learning algorithm is $\hat{h}=h_{\hat{a}}$
 - · this is the most "basic" learning algorithm
- in our study of learning theory, it will be useful to abstract away from the specific parameterization of hypothesis
 - define the *hypothesis class* H used by a learning algorithm to be the set of all classifiers considered by it
 - e.g., for linear classification, $\mathcal{H} = \{h_{\theta} : h_{\theta}(x) = 1 \{\theta^T x \ge 0\}, \theta \in \mathbb{R}^{n+1}\}$ is the set of all classifiers over ${\cal X}$ (the domain of the inputs) where the decision boundary is linear
 - most broadly, if we were studying neural networks (for example), then H would be the set of all classifiers representable by some neural network architecture
 - empirical risk minimization is then a minimization over the class of functions H, in which the learning algorithm picks the hypothesis:

$$\hat{h} = \arg\min_{h \in \mathcal{H}} \hat{\mathcal{E}}(h)$$

3. The case of finite ${\cal H}$

- Start by considering a learning problem with a finite hypothesis class $\mathcal{H} = \{h_1, \dots, h_k\}$ consisting of k hypotheses
 - \mathcal{H} is a set of k functions mapping from \mathcal{X} to $\{0,1\}$
 - empirical risk minimization selects \hat{h} to be whichever of these k functions has the smallest training error
 - we will derive some guarantees on the generalization error of \hat{h} :
 - first, we will show that $\ddot{\mathcal{E}}(h)$ is a reliable estimate of $\mathcal{E}(h)$ for all h
 - ullet second, we will show that this implies an upper-bound on the generalization error of \hat{h}
 - take any one, fixed $h_i \in \mathcal{H}$
 - consider a Bernoulli random variable ${\cal Z}$ whose distribution is defined as follows:
 - sample $(x, y) \sim D$
 - then, set $Z = 1 \{h_i(x) \neq y\}$
 - i.e., draw one example, and let Z indicate whether h_i misclassifies it
 - similarly, define $Z_j = 1 \left\{ h_i \left(x^{(j)} \right) \neq y^{(j)} \right\}$
 - since the training set was drawn iid from D, Z and the Z_j 's have the same distribution
 - the misclassification probability on a randomly drawn example, i.e. *E(h)*, is exactly the expected value of *Z* (and *Z_i*). Moreover, the training error can be written:

$$\hat{\mathcal{E}}(h_i) = \frac{1}{m} \sum_{j=1}^m Z_j$$

- thus, $\hat{\mathcal{E}}(h_i)$ is exactly the mean of the m random variables Z_j that are drawn iid from a Bernoulli distribution with mean $\mathcal{E}(h_i)$
 - by the Hoeffding inequality:

$$P\left(\left|\mathcal{E}(h_i) - \hat{\mathcal{E}}(h_i)\right| > \gamma\right) \le 2\exp(-2\gamma^2 m)$$

- this shows that, for this particular h_i, training error will be close to generalization error with high probability, assuming m is large
 - to prove that this is simultaneously true for all $h \in \mathcal{H}$:
 - let A_i denote the event that $\left|\mathcal{E}(h_i) \hat{\mathcal{E}}(h_i)\right|$
 - then, the above inequality (for a particular A_i) can be written $P(A_i) \le 2 \exp(-2\gamma^2 m)$
 - using the union bound:

$$P\left(\exists h \in \mathcal{H}. \left| \mathcal{E}(h_i) - \hat{\mathcal{E}}(h_i) \right| > \gamma\right) = P(A_1 \cup \dots \cup A_k)$$
$$\leq \sum_{i=1}^k P(A_i)$$
$$\leq \sum_{i=1}^k 2 \exp\left(-2\gamma^2 m\right)$$

 $\leq 2k \exp\left(-2\gamma^2 m\right)$ subtract both sides from 1

$$P\left(\neg \exists h \in \mathcal{H}. \left| \mathcal{E}(h_i) - \hat{\mathcal{E}}(h_i) \right| > \gamma\right) \le 1 - 2k \exp\left(-2\gamma^2 m\right)$$
$$P\left(\forall h \in \mathcal{H}. \left| \mathcal{E}(h_i) - \hat{\mathcal{E}}(h_i) \right| \le \gamma\right) \ge 1 - 2k \exp\left(-2\gamma^2 m\right)$$

- i.e., with probability at least $1-2k \exp(-2\gamma^2 m)$, $\mathcal{E}(h)$ will be within γ of $\hat{\mathcal{E}}(h)$ for all $h \in \mathcal{H}$.
 - this is a *uniform convergence* result because this bound holds simultaneously for all $h \in \mathcal{H}$.
- what we did above was, given particular values of m and γ , put a bound on the probability that for some $h \in \mathcal{H}, \left|\mathcal{E}(h) \hat{\mathcal{E}}(h)\right| > \gamma$
 - the three quantities of interest: m, γ , and the probability of error
 - each can be bounded in terms of the other two

• e.g., we can ask, "Given γ and some $\delta > 0$, how large must m be before we can guarantee that with probability at least $1 - \delta$, training error will be within γ of generalization error?"

$$1 - \delta \ge 1 - 2k \exp\left(-2\gamma^2 m\right)$$
$$2k \exp\left(-2\gamma^2 m\right) \ge \delta$$
$$\exp\left(-2\gamma^2 m\right) \ge \frac{\delta}{2k}$$
$$-2\gamma^2 m \ge \log\frac{\delta}{2k}$$
$$m \le \frac{1}{2\gamma^2} \log\frac{\delta}{2k}$$
$$m \ge \frac{1}{2\gamma^2} \log\frac{2k}{\delta}$$

- i.e., with probability at least $1-\delta$, we have that $\left|\mathcal{E}(h) \hat{\mathcal{E}}(h)\right| \leq \gamma \, \forall \, h \in \mathcal{H}$
 - equivalently, the probability $\left|\mathcal{E}(h) \hat{\mathcal{E}}(h) > \gamma\right|$ for some $h \in \mathcal{H}$ is at most δ this bound tells us how many training examples we need in order to make a guarantee

 - sample complexity: the training set size m that an algorithm requires to achieve a certain level of performance
 - key property: the number of training examples needed to make this guarantee is only *logarithmic* in k, the number of hypotheses in \mathcal{H}
- similarly, can hold m and δ fixed and solve for γ :

$$\begin{split} -2\gamma^2 m \geq \log \frac{\delta}{2k} \\ \gamma^2 &\leq -\frac{1}{2m} \log \frac{d}{2k} \\ \gamma^2 &\leq \frac{1}{2m} \log \frac{2k}{d} \\ \gamma &\leq \sqrt{\frac{1}{2m} \log \frac{2k}{d}} \\ \left| \hat{\mathcal{E}}(h) - \mathcal{E}(h) \right| \leq \sqrt{\frac{1}{2m} \log \frac{2k}{d}} \end{split}$$

- assume that uniform convergence holds, i.e. $\left|\mathcal{E}(h) \hat{\mathcal{E}}(h)\right| \leq \gamma \, \forall \, h \in \mathcal{H}$
 - what can we prove about the generalization of our learning algorithm that picked $\hat{h} = \arg \min_{h \in \mathcal{H}} \hat{\mathcal{E}}(h)$?
 - define $h^* = \arg \min_{h \in \mathcal{H}} \mathcal{E}(h)$ to be the best possible hypothesis in \mathcal{H}
 - h^* is the best hypothesis given \mathcal{H} , so it makes sense to compare performance relative to h^* :

$$\begin{split} \left| \mathcal{E}\left(\hat{h}\right) - \hat{\mathcal{E}}\left(\hat{h}\right) \right| &\leq \gamma \\ & \mathcal{E}\left(\hat{h}\right) \leq \hat{\mathcal{E}}\left(\hat{h}\right) + \gamma \\ & \mathcal{E}\left(\hat{h}\right) \leq \hat{\mathcal{E}}\left(h^*\right) + \gamma \quad \hat{\mathcal{E}}\left(\hat{h}\right) \leq \hat{\mathcal{E}}\left(h^*\right) \quad \left| \mathcal{E}\left(h^*\right) - \hat{\mathcal{E}}\left(h^*\right) \right| \\ & \mathcal{E}\left(\hat{h}\right) \leq \mathcal{E}\left(h^*\right) + 2\gamma \qquad \qquad \hat{\mathcal{E}}\left(h^*\right) \leq \mathcal{E}\left(h^*\right) + \gamma \end{split}$$

• therefore, if uniform convergence occurs, then the generalization error of \hat{h} is at most 2γ worse than the best possible hypothesis in $\mathcal{H}!$

• theorem:

- Let $|\mathcal{H}| = k$
- let m, δ be fixed
- then, with probability at least 1δ :

$$\mathcal{\mathcal{E}}\left(\hat{h}\right) \leq \left(\min_{h \in \mathcal{H}} \mathcal{\mathcal{E}}\left(h\right)\right) + 2\sqrt{\frac{1}{2m}\log\frac{2k}{\delta}}$$

- this is proved by:
 - 1. letting γ equal the $\sqrt{\cdot}$ term
 - 2. the previous argument that uniform convergence occurs with probability at least $1-\delta$
 - 3. noting that uniform convergence implies that $\mathcal{E}(h)$ is at most 2γ higher than $\mathcal{E}(h^*) = \min_{h \in \mathcal{H}} \mathcal{E}(h)$
- this quantifies the bias/variance tradeoff in model selection
 - specifically, suppose we have some hypothesis class \mathcal{H} , and a much larger hypothesis class $\mathcal{H}' \supseteq \mathcal{H}$
 - if we choose \mathcal{H}' :
 - the first term $\min_{h \in \mathcal{H}}(h)$ can only decrease, so the bias can only decrease
 - k (the number of possible hypotheses) increase, so the second term $2\sqrt{\cdot}$ also increases, corresponding to an increase in variance
- by holding γ and δ fixed and solving for m as before, we also obtain the following sample complexity bound:
 - Let $|\mathcal{H}| = k$
 - let δ, γ be fixed
 - then, for $\mathcal{E}\left(\hat{h}\right) \leq \min_{h \in \mathcal{H}} \mathcal{E}(h) + 2\gamma$ to hold with probability at least 1δ , it suffices that:

$$m \ge \frac{1}{2\gamma^2} \log \frac{2k}{\delta}$$
$$= O\left(\frac{1}{\gamma^2} \log \frac{k}{\delta}\right)$$

4. The case of infinite \mathcal{H}

- many hypothesis classes contain an infinite number of functions
 - includes any parameterized by real numbers, e.g. linear classification
- first, an "incorrect" argument:
 - suppose we have \mathcal{H} parameterized by d real numbers
 - a computer can only use a finite number of bits to represent an real number
 - IEEE double-precision floating point (i.e. a double in C) uses 64 bits to represent a floating point number
 - thus, the hypothesis class consists of at most $k=2^{64d}$ different hypotheses
 - we therefore find that, to guarantee $\mathcal{E}(\hat{h}) \leq \mathcal{E}(h^*) + 2\gamma$ to hold with probability at least 1δ , it suffices that:

$$m \ge O\left(\frac{1}{\gamma^2}\log\frac{2^{64d}}{\delta}\right)$$
$$m \ge O\left(\frac{d}{\gamma^2}\log\frac{1}{d}\right)$$
$$m \ge O_{\gamma,\delta}(d)$$

 $O_{\gamma,\delta}$ indicates that O is hiding constants dependent on γ,δ

- thus, the number of training examples needed is at most linear in the parameters of the model
- this proof is not entirely satisfying since it relies on the precision of 64-bit floating point, but the conclusion is roughly correct: If trying to minimize training error, then in order to learn "well" using a hypothesis class that has d parameters, in general we need on the order of a linear number of training examples in d
 - note that this is proven for algorithms that use empirical risk minimization. Good theoretical guarantees on non-ERM learning algorithms are a subject of active research
- this proof is also unsatisfying because it relies on the parameterization of ${\cal H}$
- intuitively, the parameterization doesn't seem like it should matter
- in order to derive a more complete argument, we need a few definitions
 - Given a set $S = \{x^{(i)}, \dots, x^{(d)}\}$ (unrelated to the definition of a training set) of points $x^{(i)} \in \mathcal{X}$:
 - we say that \mathcal{H} shatters \mathcal{S} if \mathcal{H} can realize any labeling on S.

- i.e., if for any set of labels $\{y^{(i)}, \ldots, y^{(d)}\}$, there exists some $h \in \mathcal{H}$ so that $h(x^{(i)}) = y^{(i)}$ for all $i = 1, \ldots, d$
- Given a hypothesis class \mathcal{H} , define its *Vapnik-Chervonenkis dimension*, VC(\mathcal{H}) to be the size of the largest set that is shattered by \mathcal{H}
 - If $\mathcal H$ can shatter arbitrarily large sets, then $\mathrm{VC}(\mathcal H)=\infty$
 - under the definition of the VC dimension, in order to prove that VC(H) is at least d, we only need to show that there's *at least* one set of size d that H can shatter
- the following theorem, due to Vapnik, can then be shown
 - arguably the most important theorem in all of learning theory
 - Let ${\mathcal H}$ be given
 - $\bullet \ \operatorname{let} d = \operatorname{VC}(\mathcal{H})$
 - then, with probability at least 1δ , we have that for all $h \in \mathcal{H}$,

$$\left|\mathcal{E}(h) - \hat{\mathcal{E}}(h)\right| \le O\left(\sqrt{\frac{d}{m}\log\frac{m}{d} + \frac{1}{m}\log\frac{1}{\delta}}\right)$$

- thus, with probability at least $1-\delta$, we also have that:

$$\mathcal{E}\left(\hat{h}\right) \leq \mathcal{E}\left(h^*\right) + O\left(\sqrt{\frac{d}{m}\log\frac{m}{d} + \frac{1}{m}\log\frac{1}{\delta}}\right)$$

- i.e., if a hypothesis class has finite VC dimension, then uniform convergence occurs as m becomes large
 - as for the finite case, this allows us to give a bound on $\mathcal{E}(h)$ in terms of $\mathcal{E}\left(h^{*}\right)$
- Corollary: For $\left|\mathcal{E}(h) \hat{\mathcal{E}}(h)\right| \leq \gamma$ to hold for all $h \in \mathcal{H}$ (and hence $\mathcal{E}\left(\hat{h}\right) \leq \mathcal{E}(h^*) + 2\gamma$) with probability at least 1δ , it suffices that $m = O_{\gamma,\delta}(d)$.
 - i.e., the number of training examples needed to learn "well" using ${\cal H}$ is linear in the VC dimension of ${\cal H}$
 - for "most" hypothesis classes, the VC dimension (assuming a "reasonable" parameterization) is also roughly linear in the number of parameters
 - conclusion: for an algorithm that tries to minimize training error, the number of training examples needed is usually roughly linear in the number of parameters of \mathcal{H}