CS229 lecture 4 notes

James Chuang

May 1, 2017

Contents

Learning Theory 1

1. Bias/variance tradeoff 1
2. Preliminaries 1
3. The case of finite \mathcal{H} 3
4. The case of infinite \mathcal{H} 5

My notes on Andrew Ng's CS229 lecture 4 notes.

Learning Theory

1. Bias/variance tradeoff

- also see ESL Ch 2.9 and Ch 7
- is a more complex/flexible/high-capacity model better than a simple/inflexible/low-capacity model?
- some informal definitions:
- generalization error: the expected error on samples not necessarily in the training set
- bias: the expected generalization error even if a model were fit to a very (infinitely) large training set
- high bias corresponds with underfitting: i.e. failing to capture structure exhibited by the data
- variance: how much the generalization error is expected to change if the training set changes
- high variance corresponds with overfitting: i.e. fitting to the noise in the training set
- there is a bias-variance tradeoff:
- a simple/inflexible/low-capacity model with few parameters may have large bias (but smaller variance)
- a complex/flexible/high-capacity model with many parameters may have large variance (but smaller bias)

2. Preliminaries

- things we want to do:

1. make the bias/variance tradeoff formal

- this will lead to model selection methods, e.g. for choosing what order polynomial to fit to a training set

2. relate error on the training set to generalization error

- we care about generalization error, but we train models on training sets

3. find conditions under which we can prove that learning algorithms will work well?

- two simple but useful lemmas:
- the union bound
- Let $A_{1}, A_{2}, \ldots, A_{k}$ be k different (not necessarily independent) events. Then,

$$
P\left(A_{1} \cup \cdots \cup A_{k}\right) \leq P\left(A_{1}\right)+\cdots+P\left(A_{k}\right)
$$

- in words, the probability of any one of k events happening is at most the sums of the probabilities of the k different events
- Hoeffding inequality aka the Chernoff bound in learning theory
- Let Z_{1}, \ldots, Z_{m} be m i.i.d. random variables drawn from a $\operatorname{Bernoulli}(\phi)$ distribution, i.e.

$$
P\left(Z_{i}=1\right)=\phi \quad \text { and } \quad P\left(Z_{i}=0\right)=1-\phi
$$

- Let $\hat{\phi}=\frac{1}{m} \sum_{i=1}^{m} Z_{i}$ be the mean of these random variables
- Let any $\gamma>0$ be fixed. Then,

$$
P(|\phi-\hat{\phi}|>\gamma) \leq 2 \exp \left(-2 \gamma^{2} m\right)
$$

- in words, if we take $\hat{\phi}$ - the average of m Bernoulli (ϕ) random variables - to be our estimate of ϕ, then the probability of our being far from the true value is small, so long as m is large
- note that this only applies to the case of m Bernoulli random variables described here: the more general Hoeffding inequality is described in the supplemental notes
- in other words, if you have a biased coin whose chance of landing on heads is ϕ, then if you toss it m times and calculate the fraction of time that it came up heads, that will be a good estimate of ϕ with high probability (if m is large)
- first, restrict attention to binary classification with labels $y \in\{0,1\}$
- note that everything here generalizes to other problems, including regression and multi-class classification
- assume a training set $S=\left\{\left(x^{(i)}, y^{(i)}\right) ; i=1, \ldots, m\right\}$ of size m, where the training examples $\left(x^{(i)}, y^{(i)}\right)$ are drawn i.i.d. from some probability distribution \mathcal{D}
- for a hypothesis h, define the training error (aka the empirical risk or empirical error in learning theory):

$$
\hat{\mathcal{E}}(h)=\frac{1}{m} \sum_{i=1}^{m} 1\left\{h\left(x^{(i)}\right) \neq y^{(i)}\right\}
$$

- i.e., the fraction of training examples that h misclassifies
- when we want to make clear the dependence of $\hat{\mathcal{E}}(h)$ on the training set S, we can write it $\hat{\mathcal{E}}_{S}(h)$
- define the generalization error to be:

$$
\mathcal{E}(h)=P_{(x, y) \sim \mathcal{D}}(h(x) \neq y)
$$

- i.e., the probability that, if we draw a new example (x, y) from the distribution \mathcal{D}, it will be misclassified by h
- note the assumption that the training data are drawn from the same distribution \mathcal{D} with which the hypothesis is evaluated
- this is sometimes referred to as one of the PAC (probably approximately correct) assumptions
- consider the setting of linear classification
- let $h_{\theta}(x)=1\left\{\theta^{T} x \geq 0\right\}$
- what's a reasonable way of fitting the parameters θ ?
- one approach: minimize the training error by picking:

$$
\hat{\theta}=\arg \min _{\theta} \hat{\mathcal{E}}\left(h_{\theta}\right)
$$

- this is called empirical risk minimization (ERM)
- the resulting hypothesis output by the learning algorithm is $\hat{h}=h_{\hat{\theta}}$
- this is the most "basic" learning algorithm
- in our study of learning theory, it will be useful to abstract away from the specific parameterization of hypothesis
- define the hypothesis class \mathcal{H} used by a learning algorithm to be the set of all classifiers considered by it
- e.g., for linear classification, $\mathcal{H}=\left\{h_{\theta}: h_{\theta}(x)=1\left\{\theta^{T} x \geq 0\right\}, \theta \in \mathbb{R}^{n+1}\right\}$ is the set of all classifiers over \mathcal{X} (the domain of the inputs) where the decision boundary is linear
- most broadly, if we were studying neural networks (for example), then \mathcal{H} would be the set of all classifiers representable by some neural network architecture
- empirical risk minimization is then a minimization over the class of functions \mathcal{H}, in which the learning algorithm picks the hypothesis:

$$
\hat{h}=\arg \min _{h \in \mathcal{H}} \hat{\mathcal{E}}(h)
$$

3. The case of finite \mathcal{H}

- Start by considering a learning problem with a finite hypothesis class $\mathcal{H}=\left\{h_{1}, \ldots, h_{k}\right\}$ consisting of k hypotheses
- \mathcal{H} is a set of k functions mapping from \mathcal{X} to $\{0,1\}$
- empirical risk minimization selects \hat{h} to be whichever of these k functions has the smallest training error
- we will derive some guarantees on the generalization error of \hat{h} :
- first, we will show that $\hat{\mathcal{E}}(h)$ is a reliable estimate of $\mathcal{E}(h)$ for all h
- second, we will show that this implies an upper-bound on the generalization error of \hat{h}
- take any one, fixed $h_{i} \in \mathcal{H}$
- consider a Bernoulli random variable Z whose distribution is defined as follows:
- sample $(x, y) \sim D$
- then, set $Z=1\left\{h_{i}(x) \neq y\right\}$
- i.e., draw one example, and let Z indicate whether h_{i} misclassifies it
- similarly, define $Z_{j}=1\left\{h_{i}\left(x^{(j)}\right) \neq y^{(j)}\right\}$
- since the training set was drawn iid from \mathcal{D}, Z and the Z_{j} 's have the same distribution
- the misclassification probability on a randomly drawn example, i.e. $\mathcal{E}(h)$, is exactly the expected value of Z (and Z_{j}). Moreover, the training error can be written:

$$
\hat{\mathcal{E}}\left(h_{i}\right)=\frac{1}{m} \sum_{j=1}^{m} Z_{j}
$$

- thus, $\hat{\mathcal{E}}\left(h_{i}\right)$ is exactly the mean of the m random variables Z_{j} that are drawn iid from a Bernoulli distribution with mean $\mathcal{E}\left(h_{i}\right)$
- by the Hoeffding inequality:

$$
P\left(\left|\mathcal{E}\left(h_{i}\right)-\hat{\mathcal{E}}\left(h_{i}\right)\right|>\gamma\right) \leq 2 \exp \left(-2 \gamma^{2} m\right)
$$

- this shows that, for this particular h_{i}, training error will be close to generalization error with high probability, assuming m is large
- to prove that this is simultaneously true for all $h \in \mathcal{H}$:
- let A_{i} denote the event that $\left|\mathcal{E}\left(h_{i}\right)-\hat{\mathcal{E}}\left(h_{i}\right)\right|$
- then, the above inequality (for a particular A_{i}) can be written $P\left(A_{i}\right) \leq 2 \exp \left(-2 \gamma^{2} m\right)$
- using the union bound:

$$
\begin{aligned}
P\left(\exists h \in \mathcal{H} .\left|\mathcal{E}\left(h_{i}\right)-\hat{\mathcal{E}}\left(h_{i}\right)\right|>\gamma\right) & =P\left(A_{1} \cup \cdots \cup A_{k}\right) \\
& \leq \sum_{i=1}^{k} P\left(A_{i}\right) \\
& \leq \sum_{i=1}^{k} 2 \exp \left(-2 \gamma^{2} m\right) \\
& \leq 2 k \exp \left(-2 \gamma^{2} m\right) \quad \text { subtract both sides from } 1 \\
P\left(\neg \exists h \in \mathcal{H} .\left|\mathcal{E}\left(h_{i}\right)-\hat{\mathcal{E}}\left(h_{i}\right)\right|>\gamma\right) & \leq 1-2 k \exp \left(-2 \gamma^{2} m\right) \\
P\left(\forall h \in \mathcal{H} .\left|\mathcal{E}\left(h_{i}\right)-\hat{\mathcal{E}}\left(h_{i}\right)\right| \leq \gamma\right) & \geq 1-2 k \exp \left(-2 \gamma^{2} m\right)
\end{aligned}
$$

- i.e., with probability at least $1-2 k \exp \left(-2 \gamma^{2} m\right), \mathcal{E}(h)$ will be within γ of $\hat{\mathcal{E}}(h)$ for all $h \in \mathcal{H}$.
- this is a uniform convergence result because this bound holds simultaneously for all $h \in \mathcal{H}$.
- what we did above was, given particular values of m and γ, put a bound on the probability that for some $h \in \mathcal{H},|\mathcal{E}(h)-\hat{\mathcal{E}}(h)|>\gamma$
- the three quantities of interest: m, γ, and the probability of error
- each can be bounded in terms of the other two
- e.g., we can ask, "Given γ and some $\delta>0$, how large must m be before we can guarantee that with probability at least $1-\delta$, training error will be within γ of generalization error?"

$$
\begin{aligned}
1-\delta & \geq 1-2 k \exp \left(-2 \gamma^{2} m\right) \\
2 k \exp \left(-2 \gamma^{2} m\right) & \geq \delta \\
\exp \left(-2 \gamma^{2} m\right) & \geq \frac{\delta}{2 k} \\
-2 \gamma^{2} m & \geq \log \frac{\delta}{2 k} \\
m & \leq \frac{1}{2 \gamma^{2}} \log \frac{\delta}{2 k} \\
m & \geq \frac{1}{2 \gamma^{2}} \log \frac{2 k}{\delta}
\end{aligned}
$$

- i.e., with probability at least $1-\delta$, we have that $|\mathcal{E}(h)-\hat{\mathcal{E}}(h)| \leq \gamma \forall h \in \mathcal{H}$
- equivalently, the probability $|\mathcal{E}(h)-\hat{\mathcal{E}}(h)>\gamma|$ for some $h \in \mathcal{H}$ is at most δ
- this bound tells us how many training examples we need in order to make a guarantee
- sample complexity: the training set size m that an algorithm requires to achieve a certain level of performance
- key property: the number of training examples needed to make this guarantee is only logarithmic in k, the number of hypotheses in \mathcal{H}
- similarly, can hold m and δ fixed and solve for γ :

$$
\begin{aligned}
-2 \gamma^{2} m & \geq \log \frac{\delta}{2 k} \\
\gamma^{2} & \leq-\frac{1}{2 m} \log \frac{d}{2 k} \\
\gamma^{2} & \leq \frac{1}{2 m} \log \frac{2 k}{d} \\
\gamma & \leq \sqrt{\frac{1}{2 m} \log \frac{2 k}{d}} \\
|\hat{\mathcal{E}}(h)-\mathcal{E}(h)| & \leq \sqrt{\frac{1}{2 m} \log \frac{2 k}{d}}
\end{aligned}
$$

- assume that uniform convergence holds, i.e. $|\mathcal{E}(h)-\hat{\mathcal{E}}(h)| \leq \gamma \forall h \in \mathcal{H}$
- what can we prove about the generalization of our learning algorithm that picked $\hat{h}=\arg \min _{h \in \mathcal{H}} \hat{\mathcal{E}}(h)$?
- define $h^{*}=\arg \min _{h \in \mathcal{H}} \mathcal{E}(h)$ to be the best possible hypothesis in \mathcal{H}
- h^{*} is the best hypothesis given \mathcal{H}, so it makes sense to compare performance relative to h^{*} :

$$
\begin{array}{rlrl}
|\mathcal{E}(\hat{h})-\hat{\mathcal{E}}(\hat{h})| & \leq \gamma & & \\
\mathcal{E}(\hat{h}) & \leq \hat{\mathcal{E}}(\hat{h})+\gamma & & \\
\mathcal{E}(\hat{h}) & \leq \hat{\mathcal{E}}\left(h^{*}\right)+\gamma & \hat{\mathcal{E}}(\hat{h}) \leq \hat{\mathcal{E}}\left(h^{*}\right) & \left|\mathcal{E}\left(h^{*}\right)-\hat{\mathcal{E}}\left(h^{*}\right)\right| \\
\mathcal{E}(\hat{h}) & \leq \mathcal{E}\left(h^{*}\right)+2 \gamma & \hat{\mathcal{E}}\left(h^{*}\right) \leq \mathcal{E}\left(h^{*}\right)+\gamma
\end{array}
$$

- therefore, if uniform convergence occurs, then the generalization error of \hat{h} is at most 2γ worse than the best possible hypothesis in \mathcal{H} !
- theorem:
- Let $|\mathcal{H}|=k$
- let m, δ be fixed
- then, with probability at least $1-\delta$:

$$
\mathcal{E}(\hat{h}) \leq\left(\min _{h \in \mathcal{H}} \mathcal{E}(h)\right)+2 \sqrt{\frac{1}{2 m} \log \frac{2 k}{\delta}}
$$

- this is proved by:

1. letting γ equal the $\sqrt{ }$. term
2. the previous argument that uniform convergence occurs with probability at least $1-\delta$
3. noting that uniform convergence implies that $\mathcal{E}(h)$ is at most 2γ higher than $\mathcal{E}\left(h^{*}\right)=\min _{h \in \mathcal{H}} \mathcal{E}(h)$

- this quantifies the bias/variance tradeoff in model selection
- specifically, suppose we have some hypothesis class \mathcal{H}, and a much larger hypothesis class $\mathcal{H}^{\prime} \supseteq \mathcal{H}$
- if we choose \mathcal{H}^{\prime} :
- the first term $\min _{h \in \mathcal{H}}(h)$ can only decrease, so the bias can only decrease
- k (the number of possible hypotheses) increase, so the second term $2 \sqrt{ }$ also increases, corresponding to an increase in variance
- by holding γ and δ fixed and solving for m as before, we also obtain the following sample complexity bound:
- Let $|\mathcal{H}|=k$
- let δ, γ be fixed
- then, for $\mathcal{E}(\hat{h}) \leq \min _{h \in \mathcal{H}} \mathcal{E}(h)+2 \gamma$ to hold with probability at least $1-\delta$, it suffices that:

$$
\begin{aligned}
m & \geq \frac{1}{2 \gamma^{2}} \log \frac{2 k}{\delta} \\
& =O\left(\frac{1}{\gamma^{2}} \log \frac{k}{\delta}\right)
\end{aligned}
$$

4. The case of infinite \mathcal{H}

- many hypothesis classes contain an infinite number of functions
- includes any parameterized by real numbers, e.g. linear classification
- first, an "incorrect" argument:
- suppose we have \mathcal{H} parameterized by d real numbers
- a computer can only use a finite number of bits to represent an real number
- IEEE double-precision floating point (i.e. a double in C) uses 64 bits to represent a floating point number
- thus, the hypothesis class consists of at most $k=2^{64 d}$ different hypotheses
- we therefore find that, to guarantee $\mathcal{E}(\hat{h}) \leq \mathcal{E}\left(h^{*}\right)+2 \gamma$ to hold with probability at least $1-\delta$, it suffices that:

$$
\begin{aligned}
& m \geq O\left(\frac{1}{\gamma^{2}} \log \frac{2^{64 d}}{\delta}\right) \\
& m \geq O\left(\frac{d}{\gamma^{2}} \log \frac{1}{d}\right)
\end{aligned}
$$

$$
m \geq O_{\gamma, \delta}(d) \quad O_{\gamma, \delta} \text { indicates that } O \text { is hiding constants dependent on } \gamma, \delta
$$

- thus, the number of training examples needed is at most linear in the parameters of the model
- this proof is not entirely satisfying since it relies on the precision of 64 -bit floating point, but the conclusion is roughly correct: If trying to minimize training error, then in order to learn "well" using a hypothesis class that has d parameters, in general we need on the order of a linear number of training examples in d
- note that this is proven for algorithms that use empirical risk minimization. Good theoretical guarantees on non-ERM learning algorithms are a subject of active research
- this proof is also unsatisfying because it relies on the parameterization of \mathcal{H}
- intuitively, the parameterization doesn't seem like it should matter
- in order to derive a more complete argument, we need a few definitions
- Given a set $S=\left\{x^{(i)}, \ldots, x^{(d)}\right\}$ (unrelated to the definition of a training set) of points $x^{(i)} \in \mathcal{X}$:
- we say that \mathcal{H} shatters \mathcal{S} if \mathcal{H} can realize any labeling on S.
- i.e., if for any set of labels $\left\{y^{(i)}, \ldots, y^{(d)}\right\}$, there exists some $h \in \mathcal{H}$ so that $h\left(x^{(i)}\right)=y^{(i)}$ for all $i=1, \ldots, d$
- Given a hypothesis class \mathcal{H}, define its Vapnik-Chervonenkis dimension, $\mathrm{VC}(\mathcal{H})$ to be the size of the largest set that is shattered by \mathcal{H}
- If \mathcal{H} can shatter arbitrarily large sets, then $\operatorname{VC}(\mathcal{H})=\infty$
- under the definition of the VC dimension, in order to prove that $\mathrm{VC}(\mathcal{H})$ is at least d, we only need to show that there's at least one set of size d that \mathcal{H} can shatter
- the following theorem, due to Vapnik, can then be shown
- arguably the most important theorem in all of learning theory
- Let \mathcal{H} be given
- let $d=\mathrm{VC}(\mathcal{H})$
- then, with probability at least $1-\delta$, we have that for all $h \in \mathcal{H}$,

$$
|\mathcal{E}(h)-\hat{\mathcal{E}}(h)| \leq O\left(\sqrt{\frac{d}{m} \log \frac{m}{d}+\frac{1}{m} \log \frac{1}{\delta}}\right)
$$

- thus, with probability at least $1-\delta$, we also have that:

$$
\mathcal{E}(\hat{h}) \leq \mathcal{E}\left(h^{*}\right)+O\left(\sqrt{\frac{d}{m} \log \frac{m}{d}+\frac{1}{m} \log \frac{1}{\delta}}\right)
$$

- i.e., if a hypothesis class has finite VC dimension, then uniform convergence occurs as m becomes large
- as for the finite case, this allows us to give a bound on $\mathcal{E}(h)$ in terms of $\mathcal{E}\left(h^{*}\right)$
- Corollary: For $|\mathcal{E}(h)-\hat{\mathcal{E}}(h)| \leq \gamma$ to hold for all $h \in \mathcal{H}$ (and hence $\mathcal{E}(\hat{h}) \leq \mathcal{E}\left(h^{*}\right)+2 \gamma$) with probability at least $1-\delta$, it suffices that $m=O_{\gamma, \delta}(d)$.
- i.e., the number of training examples needed to learn "well" using \mathcal{H} is linear in the VC dimension of \mathcal{H}
- for "most" hypothesis classes, the VC dimension (assuming a "reasonable" parameterization) is also roughly linear in the number of parameters
- conclusion: for an algorithm that tries to minimize training error, the number of training examples needed is usually roughly linear in the number of parameters of \mathcal{H}

