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My notes on Andrew Ng’s CS229 lecture 4 notes.

Learning Theory

1. Bias/variance tradeoff

• also see ESL Ch 2.9 and Ch 7
• is a more complex/flexible/high-capacity model better than a simple/inflexible/low-capacity model?
• some informal definitions:

• generalization error : the expected error on samples not necessarily in the training set
• bias: the expected generalization error even if a model were fit to a very (infinitely) large training set

• high bias corresponds with underfitting: i.e. failing to capture structure exhibited by the data
• variance: how much the generalization error is expected to change if the training set changes

• high variance corresponds with overfitting: i.e. fitting to the noise in the training set
• there is a bias-variance tradeoff :

• a simple/inflexible/low-capacity model with few parameters may have large bias (but smaller variance)
• a complex/flexible/high-capacity model with many parameters may have large variance (but smaller bias)

2. Preliminaries

• things we want to do:
1. make the bias/variance tradeoff formal

• this will lead to model selection methods, e.g. for choosing what order polynomial to fit to a training set
2. relate error on the training set to generalization error

• we care about generalization error, but we train models on training sets
3. find conditions under which we can prove that learning algorithms will work well?

• two simple but useful lemmas:
• the union bound

• Let A1, A2, . . . , Ak be k different (not necessarily independent) events. Then,

P (A1 ∪ · · · ∪ Ak) ≤ P (A1) + · · · + P (Ak).

• in words, the probability of any one of k events happening is at most the sums of the probabilities of the k different
events

• Hoeffding inequality aka the Chernoff bound in learning theory
• Let Z1, . . . , Zm be m i.i.d. random variables drawn from a Bernoulli(ϕ) distribution, i.e.
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P (Zi = 1) = ϕ and P (Zi = 0) = 1 − ϕ

• Let ϕ̂ = 1
m

∑m
i=1 Zi be the mean of these random variables

• Let any γ > 0 be fixed. Then,

P
(∣∣∣ϕ − ϕ̂

∣∣∣ > γ
)

≤ 2 exp
(
−2γ2m

)
• in words, if we take ϕ̂ – the average ofm Bernoulli(ϕ) randomvariables – to be our estimate ofϕ, then the probability

of our being far from the true value is small, so long as m is large
• note that this only applies to the case of mBernoulli random variables described here: the more general Ho-

effding inequality is described in the supplemental notes
• in other words, if you have a biased coin whose chance of landing on heads is ϕ, then if you toss it m times and

calculate the fraction of time that it came up heads, that will be a good estimate of ϕ with high probability (if m is
large)

• first, restrict attention to binary classification with labels y ∈ {0, 1}
• note that everything here generalizes to other problems, including regression and multi-class classification
• assume a training set S =

{(
x(i), y(i)) ; i = 1, . . . , m

}
of size m, where the training examples

(
x(i), y(i))

are drawn i.i.d. from some probability distribution D
• for a hypothesis h, define the training error (aka the empirical risk or empirical error in learning theory):

Ê(h) = 1
m

m∑
i=1

1
{

h
(

x(i)
)

̸= y(i)
}

• i.e., the fraction of training examples that h misclassifies
• when we want to make clear the dependence of Ê(h) on the training set S, we can write it ÊS(h)

• define the generalization error to be:

E(h) = P(x,y)∼D (h(x) ̸= y)

• i.e., the probability that, if we draw a new example (x, y) from the distribution D, it will be misclassified by h
• note the assumption that the training data are drawn from the same distribution D with which the hypothesis is

evaluated
• this is sometimes referred to as one of the PAC (probably approximately correct) assumptions

• consider the setting of linear classification
• let hθ(x) = 1

{
θT x ≥ 0

}
• what’s a reasonable way of fitting the parameters θ?

• one approach: minimize the training error by picking:

θ̂ = arg min
θ

Ê (hθ)

• this is called empirical risk minimization (ERM)
• the resulting hypothesis output by the learning algorithm is ĥ = hθ̂

• this is the most “basic” learning algorithm
• in our study of learning theory, it will be useful to abstract away from the specific parameterization of hypothesis

• define the hypothesis class H used by a learning algorithm to be the set of all classifiers considered by it
• e.g., for linear classification, H =

{
hθ : hθ(x) = 1

{
θT x ≥ 0

}
, θ ∈ Rn+1} is the set of all classifiers

over X (the domain of the inputs) where the decision boundary is linear
• most broadly, if we were studying neural networks (for example), thenH would be the set of all classifiers

representable by some neural network architecture
• empirical risk minimization is then a minimization over the class of functions H, in which the learning algorithm

picks the hypothesis:

ĥ = arg min
h∈H

Ê(h)
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3. The case of finite H

• Start by considering a learning problem with a finite hypothesis class H = {h1, . . . , hk} consisting of k hypotheses
• H is a set of k functions mapping from X to {0, 1}

• empirical risk minimization selects ĥ to be whichever of these k functions has the smallest training error
• we will derive some guarantees on the generalization error of ĥ:

• first, we will show that Ê(h) is a reliable estimate of E(h) for all h
• second, we will show that this implies an upper-bound on the generalization error of ĥ

• take any one, fixed hi ∈ H
• consider a Bernoulli random variable Z whose distribution is defined as follows:

• sample (x, y) ∼ D
• then, set Z = 1 {hi(x) ̸= y}

• i.e., draw one example, and let Z indicate whether hi misclassifies it
• similarly, define Zj = 1

{
hi

(
x(j)) ̸= y(j)}

• since the training set was drawn iid from D, Z and the Zj ’s have the same distribution
• the misclassification probability on a randomly drawn example, i.e. E(h), is exactly the expected value

of Z (and Zj ). Moreover, the training error can be written:

Ê(hi) = 1
m

m∑
j=1

Zj

• thus, Ê(hi) is exactly the mean of the m random variables Zj that are drawn iid from a Bernoulli distri-
bution with mean E(hi)
• by the Hoeffding inequality:

P
(∣∣∣E(hi) − Ê(hi)

∣∣∣ > γ
)

≤ 2 exp(−2γ2m)

• this shows that, for this particular hi, training error will be close to generalization error with high prob-
ability, assuming m is large
• to prove that this is simultaneously true for all h ∈ H:

• let Ai denote the event that
∣∣∣E(hi) − Ê(hi)

∣∣∣
• then, the above inequality (for a particular Ai) can be written P (Ai) ≤ 2 exp(−2γ2m)
• using the union bound:

P
(

∃ h ∈ H.
∣∣∣E(hi) − Ê(hi)

∣∣∣ > γ
)

= P (A1 ∪ · · · ∪ Ak)

≤
k∑

i=1
P (Ai)

≤
k∑

i=1
2 exp

(
−2γ2m

)
≤ 2k exp

(
−2γ2m

)
subtract both sides from 1

P
(

¬∃ h ∈ H.
∣∣∣E(hi) − Ê(hi)

∣∣∣ > γ
)

≤ 1 − 2k exp
(
−2γ2m

)
P
(

∀h ∈ H.
∣∣∣E(hi) − Ê(hi)

∣∣∣ ≤ γ
)

≥ 1 − 2k exp
(
−2γ2m

)
• i.e., with probability at least 1−2k exp

(
−2γ2m

)
, E(h)will be within γ of Ê(h) for allh ∈ H.

• this is a uniform convergence result because this bound holds simultaneously for all h ∈ H.
• what we did above was, given particular values of m and γ, put a bound on the probability that for some

h ∈ H,
∣∣∣E(h) − Ê(h)

∣∣∣ > γ

• the three quantities of interest: m, γ, and the probability of error
• each can be bounded in terms of the other two
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• e.g., we can ask, “Given γ and some δ > 0, how large must m be before we can guarantee that with
probability at least 1 − δ, training error will be within γ of generalization error?”

1 − δ ≥ 1 − 2k exp
(
−2γ2m

)
2k exp

(
−2γ2m

)
≥ δ

exp
(
−2γ2m

)
≥ δ

2k

−2γ2m ≥ log δ

2k

m ≤ 1
2γ2 log δ

2k

m ≥ 1
2γ2 log 2k

δ

• i.e., with probability at least 1 − δ, we have that
∣∣∣E(h) − Ê(h)

∣∣∣ ≤ γ ∀ h ∈ H

• equivalently, the probability
∣∣∣E(h) − Ê(h) > γ

∣∣∣ for some h ∈ H is at most δ
• this bound tells us how many training examples we need in order to make a guarantee

• sample complexity : the training set size m that an algorithm requires to achieve a certain level of
performance

• key property: the number of training examples needed to make this guarantee is only logarithmic in k,
the number of hypotheses in H

• similarly, can hold m and δ fixed and solve for γ:

−2γ2m ≥ log δ

2k

γ2 ≤ − 1
2m

log d

2k

γ2 ≤ 1
2m

log 2k

d

γ ≤
√

1
2m

log 2k

d∣∣∣Ê(h) − E(h)
∣∣∣ ≤

√
1

2m
log 2k

d

• assume that uniform convergence holds, i.e.
∣∣∣E(h) − Ê(h)

∣∣∣ ≤ γ ∀ h ∈ H
• what canweprove about the generalization of our learning algorithm that picked ĥ = arg minh∈H Ê(h)?
• define h∗ = arg minh∈H E(h) to be the best possible hypothesis in H

• h∗ is the best hypothesis given H, so it makes sense to compare performance relative to h∗:∣∣∣E (ĥ
)

− Ê
(

ĥ
)∣∣∣ ≤ γ

E
(

ĥ
)

≤ Ê
(

ĥ
)

+ γ

E
(

ĥ
)

≤ Ê (h∗) + γ Ê
(

ĥ
)

≤ Ê (h∗)
∣∣∣E (h∗) − Ê (h∗)

∣∣∣
E
(

ĥ
)

≤ E (h∗) + 2γ Ê (h∗) ≤ E (h∗) + γ

• therefore, if uniform convergence occurs, then the generalization error of ĥ is at most 2γ worse than
the best possible hypothesis in H!

• theorem:
• Let |H| = k
• let m, δ be fixed
• then, with probability at least 1 − δ:

4



E
(

ĥ
)

≤
(

min
h∈H

E (h)
)

+ 2
√

1
2m

log 2k

δ

• this is proved by:
1. letting γ equal the

√
· term

2. the previous argument that uniform convergence occurs with probability at least 1 − δ
3. noting that uniform convergence implies that E(h) is at most 2γ higher than E(h∗) = minh∈H E(h)

• this quantifies the bias/variance tradeoff in model selection
• specifically, suppose we have some hypothesis class H, and a much larger hypothesis class H′ ⊇ H
• if we choose H′:

• the first term minh∈H(h) can only decrease, so the bias can only decrease
• k (the number of possible hypotheses) increase, so the second term 2

√
· also increases, corresponding to an

increase in variance
• by holding γ and δ fixed and solving for m as before, we also obtain the following sample complexity bound:

• Let |H| = k
• let δ, γ be fixed
• then, for E

(
ĥ
)

≤ minh∈H E(h) + 2γ to hold with probability at least 1 − δ, it suffices that:

m ≥ 1
2γ2 log 2k

δ

= O

(
1
γ2 log k

δ

)

4. The case of infinite H

• many hypothesis classes contain an infinite number of functions
• includes any parameterized by real numbers, e.g. linear classification

• first, an “incorrect” argument:
• suppose we have H parameterized by d real numbers

• a computer can only use a finite number of bits to represent an real number
• IEEE double-precision floating point (i.e. a double in C) uses 64 bits to represent a floating point number
• thus, the hypothesis class consists of at most k = 264d different hypotheses

• we therefore find that, to guarantee E
(

ĥ
)

≤ E (h∗)+2γ to hold with probability at least 1− δ, it suffices
that:

m ≥ O

(
1
γ2 log 264d

δ

)
m ≥ O

(
d

γ2 log 1
d

)
m ≥ Oγ,δ (d) Oγ,δ indicates that O is hiding constants dependent on γ, δ

• thus, the number of training examples needed is at most linear in the parameters of the model
• this proof is not entirely satisfying since it relies on the precision of 64-bit floating point, but the conclusion is

roughly correct: If trying to minimize training error, then in order to learn “well” using a hypothesis class that
has d parameters, in general we need on the order of a linear number of training examples in d
• note that this is proven for algorithms that use empirical risk minimization. Good theoretical guarantees

on non-ERM learning algorithms are a subject of active research
• this proof is also unsatisfying because it relies on the parameterization of H

• intuitively, the parameterization doesn’t seem like it should matter
• in order to derive a more complete argument, we need a few definitions

• Given a set S =
{

x(i), . . . , x(d)} (unrelated to the definition of a training set) of points x(i) ∈ X :
• we say that H shatters S if H can realize any labeling on S.
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• i.e., if for any set of labels
{

y(i), . . . , y(d)}, there exists some h ∈ H so that h
(
x(i)) = y(i) for all

i = 1, . . . , d
• Given a hypothesis class H, define its Vapnik-Chervonenkis dimension, VC(H) to be the size of the largest set that

is shattered by H
• If H can shatter arbitrarily large sets, then VC(H) = ∞
• under the definition of the VC dimension, in order to prove that VC(H) is at least d, we only need to show that there’s
at least one set of size d that H can shatter

• the following theorem, due to Vapnik, can then be shown
• arguably the most important theorem in all of learning theory
• Let H be given
• let d = VC(H)
• then, with probability at least 1 − δ, we have that for all h ∈ H,

∣∣∣E(h) − Ê(h)
∣∣∣ ≤ O

(√
d

m
log m

d
+ 1

m
log 1

δ

)
• thus, with probability at least 1 − δ, we also have that:

E
(

ĥ
)

≤ E (h∗) + O

(√
d

m
log m

d
+ 1

m
log 1

δ

)
• i.e., if a hypothesis class has finite VC dimension, then uniform convergence occurs as m becomes large

• as for the finite case, this allows us to give a bound on E(h) in terms of E (h∗)
• Corollary: For

∣∣∣E(h) − Ê(h)
∣∣∣ ≤ γ to hold for all h ∈ H (and hence E

(
ĥ
)

≤ E(h∗) + 2γ) with probability at least
1 − δ, it suffices that m = Oγ,δ(d).

• i.e., the number of training examples needed to learn “well” using H is linear in the VC dimension of H
• for “most” hypothesis classes, the VC dimension (assuming a “reasonable” parameterization) is also roughly

linear in the number of parameters
• conclusion: for an algorithm that tries to minimize training error, the number of training examples needed is usually

roughly linear in the number of parameters of H
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