
CS229 lecture 3 notes
James Chuang

February 6, 2017

Contents
Support Vector Machines 1

1. Margins: Intuition . 1
2. Notation . 1
3. Functional and geometric margins . 2
4. The optimal margin classifier . 3
5. Digression: Lagrange duality . 4
6. Optimal margin classifiers . 6
7. Kernels . 7
8. Regularization and the non-separable case . 10
9. The SMO algorithm . 11

My notes on Andrew Ng’s CS229 lecture 3 notes.

Support Vector Machines

1. Margins: Intuition

Consider logistic regression:

• p(y = 1 | x; θ) is modeled by hθ(x) = g
(
θT x

)
• hθ(x) ≥ 0.5, i.e. θT x ≥ 0→ predict “1”
• larger θT x, larger hθ(x) = p(y = 1 | x; w, b), higher “confidence” in prediction of label 1
• informally, a prediction y = 1 is a very confident one if θT x≫ 0
• similarly, a prediction y = 0 is a very confident one if θT x≪ 0
• therefore, a good fit to the data would be to find θ such that θT x(i) ≫ 0whenever y(i) = 1, and θT x(i) ≪ 0

whenever y(i) = 0.
• geometrically, points far away from the separating hyperplane can be predicted with higher confidence than points close

to the separating hyperplane

2. Notation

Consider a linear classifier for a binary classification problem with labels y and features x:

• y ∈ {−1, 1}
• parameters w, b (treat the bias/intercept b separately from the weights w)
• write classifier as:

hw,b(x) = g(wT x + b)

g(z) =

{
1 if z ≥ 0
−1 otherwise

1

http://cs229.stanford.edu/materials.html

Note that from the definition of g, this classifier directly predicts either 1 or −1 without first going through the intermediate step of
estimating the probability of y being 1, as in logistic regression.

3. Functional and geometric margins

Functional margins

Given a training example
(
x(i), y(i)), define the functional margin γ̂(i) of (w, b) w.r.t. the training example:

γ̂(i) = y(i) (wT x + b
)

Note: {
if y(i) = 1, then γ̂(i) ≫ 0 if wT x + b≫ 0
if y(i) = −1, then γ̂(i) ≫ 0 if wT x + b≪ 0

A prediction is correct if y(i) (wT x + b
)

> 0. Large functional margin = a confident and correct prediction.

One property of this classifier needs to be addressed: g, and hence hw,b(x) depends on the sign, but not on the magnitude of
wT x + b. (E.g., g(wT x + b) = g(2wT x + 2b)). Therefore, without an additional normalization condition, the functional margin
can be made arbitrarily large by scaling w and b. We will come back to the normalization condition later.

Given a training set S =
{(

x(i), y(i)) ; i = 1, . . . , m
}
, define the functional margin γ̂ of (w, b) w.r.t. S to be the smallest of the

functional margins of the individual training examples:

γ̂ = min
i=1,...,m

γ̂(i)

The functional margin simply tells you whether a particular point is properly classified or not. In order to be able to maximize the margin,
there needs to be a notion of magnitude. Therefore, we introduce the geometric margin, a scaled version of the functional margin that
tells you not only if a point if properly classified or not, but also the magnitude of the distance in units of ∥w∥.

Geometric margins

The vector w is orthogonal to the separating hyperplane defined by wT x + b = 0. To see this, consider two points x1 and x2 on the
hyperplane (see ESL Ch. 4.5):

wT x1 + b = wT x2 + b = 0 by def. of the hyperplane

wT x1 = wT x2

wT (x1 − x2) = 0
∴ w ⊥

{
x : wT x + b = 0

}
The geometric margin γ(i) is the distance from a training example

(
x(i), y(i))to the separating hyperplane. The projection of x(i)

onto the separating hyperplane is the point x(i) − γ(i) w
∥w∥ (remember that γ(i) ∈ R is just a scalar). Since this point is on the

decision boundary, it satisfies wT x + b = 0:

wT

(
x(i) − γ(i) w

∥w∥

)
+ b = 0

wT x(i) − γ(i) 1
∥w∥

wT w + b = 0 wT w = ∥w∥2

γ(i)∥w∥ = wT x(i) + b

γ(i) = wT x(i) + b

∥w∥

γ(i) =
(

w

∥w∥

)T

x(i) + b

∥w∥

2

To account for training examples on the other side of the decision boundary, we define the geometric margin of (w, b)w.r.t. a training
example

(
x(i), y(i)) to be:

γ(i) = y(i)

((
w

∥w∥

)T

x(i) + b

∥w∥

)

The geometric margin with ∥w∥ = 1 is equal to the functional margin.

The geometricmargin is invariant to rescaling of the parametersw and b. Thismeans that we can impose an arbitrary scaling constraint
on w, e.g. ∥w∥ = 1, |w1| = 5, or |w1 + b|+ |w2| = 2, and any of these can be satisfied simply by rescaling w and b.

Finally, given a training set S =
{(

x(i), y(i)) ; i = 1, . . . , m
}
, we also define the geometric margin of (w, b) w.r.t. S to be the

smallest of the geometric margins on the individual training examples:

γ = min
i=1,...,m

γ(i)

4. The optimal margin classifier

Given a training set, a natural criterion is to set a decision boundary thatmaximizes the (geometric)margin, since this reflects a confident
set of predictions on the training set.

Assume a training set that is linearly separable, i.e. a separating hyperplane can separate the two classes. Finding the hyperplane that
maximizes the geometric margin is an optimization problem:

max
γ,w,b

γ

s.t. y(i)
(

wT x(i) + b
)
≥ γ, i = 1, . . . , m

∥w∥ = 1

The above optimization problem is non-convex and therefore difficult to solve (due to the ∥w∥ = 1 constraint). We can transform the
problem, remembering that γ is the geometric margin and γ̂ is the functional margin:

max
γ̂,w,b

γ̂

∥w∥

s.t. y(i)
(

wT x(i) + b
)
≥ γ̂, i = 1, . . . , m

This problem is equivalent since the geometric and functional margins are related by γ = γ̂
∥w∥ . This is better, since the ∥w∥ = 1

constraint is gone, but the problem is still non-convex. To simplify it further, remember that w and b can be arbitrarily scaled without
changing anything, and set the scaling by constraining the geometric margin of w, b w.r.t. the training set to 1:

γ̂ = 1

max
γ,w,b

1
∥w∥

= min
γ,w,b

1
2
∥w∥2

s.t. y(i)
(

wT x(i) + b
)
≥ 1, i = 1, . . . , m

3

This optimization problem has a convex quadratic objective and linear constraints. Solving it (using quadratic programming) gives
the optimal margin classifier . In order to solve this, we will use the method of Lagrange multipliers generalized to include inequality
constraints in addition to equality constraints.

5. Digression: Lagrange duality

Consider the following problem:

min
w

f(w)

s.t. hi(w) = 0, i = 1, . . . , l

This can be solved with Lagrange multipliers. Define the Lagrangian:

L = f(w) +
ℓ∑

i=1
βihi(w)

The βi are the Lagrange multipliers.

To solve the problem, find the partial derivatives ofL, set to zero, and solve for w and β:

∂L
∂wi

= 0; ∂L
∂βi

= 0.

This can be generalized to constrained optimization problems with inequality as well as equality constraints. Consider the following,
called the primal optimization problem:

min
w

f(w)

s.t. gi(w) ≤ 0, i = 1, . . . , k

hi(w) = 0, i = 1, . . . , k

To solve it, start by defining the generalized Lagrangian

L (w, α, β) = f(w) +
k∑

i=1
αigi(w) +

ℓ∑
i=1

βihi(w)

Here, the αi’s and βi’s are the Lagrange multipliers. Consider the quantity

θP(w) = max
α,β:αi≥0

L(w, α, β),

where the “P” subscript stands for “primal”. Let some w be given. If w violates any of the primal constraints (i.e., gi(w) > 0 or
hi(w) ̸= 0 for some i), then:

θP(w) = max
α,β:αi≥0

(
f(w) +

k∑
i=1

αigi(w) +
ℓ∑

i=1
βihi(w)

)
=∞

Conversely, if the constraints are satisfied for a particular w, then θP(w) = f(w). Hence,

θP(w) =

{
f(w) if w satisfies primal constraints
∞ otherwise

4

https://en.wikipedia.org/wiki/Lagrange_multiplier

I.e., θP takes the same value as the objective function for all values of w that satisfy the primal constraints, and is positive infinity if
the constraints are violated. Hence, the minimization problem

min
w

θP(w) = min
w

max
α,β:αi≥0

L(w, α, β)

is the same problem (has the same solutions as) the original, primal problem. We also define the optimal value of the objective to be
p∗ = minw θP(w); we call this the value of the primal problem.

Now, consider a slightly different problem. Define

θD(α, β) = min
w
L(w, α, β).

Here, the “D” subscript stands for “dual”. Note that whereas in the definition of θP we optimized w.r.t. α, β, here we are minimizing
w.r.t. w.

Now we define the dual optimization problem:

max
α,β:αi≥0

θD(α, β) = max
α,β:αi≥0

min
w
L(w, α, β).

This is the same as the primal problem, except that the order of the max and min are exchanged. We also define the optimal value of
the dual problem’s objective to be d∗ = maxα,β:α≥0 θD(w).

The primal and dual problems are related in the following way:

d∗ ≤ p∗

max
α,β:αi≥0

min
w
L(w, α, β) ≤ min

w
max

α,β:αi≥0
L(w, α, β) because max min f ≤ min max f

Under certain conditions, d∗ = p∗, so that the solution can be found by solving the dual problem instead of the primal problem. What
are the conditions?

Suppose f and the gi’s are convex (for this purpose, this is when the Hessian is PSD), and the hi’s are affine (i.e. linear, with an
intercept term). Suppose further that the constraints gi are (strictly) feasible, i.e. there exists some w s.t. gi(w) < 0 ∀ i.

Under these assumptions, there must exist w∗, α∗, β∗ such that:

• w∗ is the solution to the primal problem
• α∗, β∗ are the solution to the dual problem
• p∗ = d∗ = L(w∗, α∗, β∗)

If some w∗, α∗, β∗ satisfy the Karush-Kuhn-Tucker (KKT) conditions, then it is also a solution to the primal and dual problems:

∂

∂wi
L(w∗, α∗, β∗) = 0, i = 1, . . . , n

∂

∂βi
L(w∗, α∗, β∗) = 0, i = 1, . . . , l

α∗
i gi(w∗) = 0, i = 1, . . . , k the dual complementarity condition
gi(w∗) ≤ 0, i = 1, . . . , k

α∗
i ≥ 0, i = 1, . . . , k

The dual complementarity condition above implies:

• if α∗
i > 0, then gi(w∗) = 0
• i.e, the gi(w) ≤ 0 constraint is active (holds with equality gi(w) = 0 rather than w/inequality)
• later, this is important for showing that the SVM has only a small number of support vectors

5

6. Optimal margin classifiers

The primal optimization problem for finding the optimal margin classifier, derived in section 4:

min
γ,w,b

1
2
∥w∥2

s.t. y(i)
(

wT x(i) + b
)
≥ 1, i = 1, . . . , m

The constraints can be written as:
gi(w) = −y(i)

(
wT x(i) + b

)
+ 1 ≤ 0

Wehave one constraint for each training example. From theKKTdual complementarity condition,αi > 0 only for the training examples
that have geometric margin exactly equal to one (i.e., the ones corresponding to constraints that hold with equality gi(w) = 0). These
training points are exactly the ones closest to the decision boundary, and are called the support vectors of the optimal margin classifier.
The fact that the number of support vectors can be much smaller than the size of the training set will be useful later.

We recast the optimization problem as the dual form of the problem, because the solution will be in terms of inner products⟨
x(i), x(j)⟩ between points in the input feature space. This will allow application of the kernel trick later.

The Lagrangian for the optimal margin classifier problem:

L(w, b, α) = 1
2
∥w∥2 −

m∑
i=1

αi

[
y(i)

(
wT x(i) + b

)
− 1
]

Find the dual form θD = minw,b L(w, b, α). Start by taking derivatives w.r.t. w and b and setting to zero:

L(w, b, α) = 1
2
∥w∥2 −

m∑
i=1

αi

[
y(i)

(
wT x(i) + b

)
− 1
]

∇wL(w, b, α) = w −
m∑

i=1
αiy

(i)x(i) = 0

w =
m∑

i=1
αiy

(i)x(i)

L(w, b, α) = 1
2
∥w∥2 −

m∑
i=1

αi

[
y(i)

(
wT x(i) + b

)
− 1
]

∂

∂b
L(w, b, α) = −

m∑
i=1

αiy
(i) = 0

m∑
i=1

αiy
(i) = 0

L(w, b, α) = 1
2
∥w∥2 −

m∑
i=1

αi

[
y(i)

(
wT x(i) + b

)
− 1
]

plug in w

= 1
2

m∑
i,j=1

y(i)y(j)αiαj

(
x(i)
)T

x(j) −
m∑

i,j=1
y(i)y(j)αiαj

(
x(i)
)T

x(j) − b

m∑
i=1

αiy
(i) +

m∑
i=1

αi

m∑
i=1

αiy
(i) = 0

=
m∑

i=1
αi −

1
2

m∑
i,j=1

y(i)y(j)αiαj

(
x(i)
)T

x(j)

6

The dual optimization problem:

max
α

W (α) =
m∑

i=1
αi −

1
2

m∑
i,j=1

y(i)y(j)αiαj

(
x(i)
)T

x(j)

s.t. αi ≥ 0, i = 1, . . . , m
m∑

i=1
αiy

(i) = 0

The conditions for p∗ = d∗ and the KKT conditions to hold are satisfied in the above problem. If we solve this maximization problem
w.r.t. the αi’s for the optimal αi’s, we can solve for the w by the above equation (w =

∑m
i=1 αiy

(i)x(i)).

Then b∗ can be solved for:

b∗ = −
maxi:y(i)=−1 w∗T x(i) + mini:y(i)=1 w∗T x(i)

2
Suppose the model has been fit to a training set. To make a prediction at a new input point x, calculate wT x + b, and predict y = 1
iff this quantity is bigger than zero.

wT x + b =

(
m∑

i=1
αiy

(i)x(i)

)T

x + b

=
m∑

i=1
αiy

(i)⟨x(i), x⟩+ b

Hence, if we’ve found the αi’s, in order to make a prediction, we need to calculate a quantity that only depends on the inner product
between x and the points in the training set. Also, the αi’s will all be zero except for the support vectors. Thus, many of the terms
in the sum will be zero, meaning that we only need to find the inner products between x and the support vectors in order to make a
prediction.

By using different kernels, the optimal margin classifier generalizes to the support vector machine, which can learn efficiently in very
high dimensional spaces.

7. Kernels

• def: original input values of problem = attributes (e.g. x, the living area of a house)
• def: the input values that are passed to the learning algorithm = features (e.g.

[
x x2 x3]T)

• def: the feature mapping ϕ, a map from the attributes to the features, e.g.:

ϕ(x) =

 x
x2

x3

Rather than applying an SVM using the original input attributes x, we may instead want to learn using some features ϕ(x). Since
the SVM algorithm can be written entirely in terms of the inner products ⟨x, z⟩, this entails replacing all those inner products with
⟨ϕ(x), ϕ(z)⟩. Specifically, given a feature mapping ϕ, we define the corresponding kernel to be

K(x, z) = ϕ(x)T ϕ(z)

Then, everywhere where the algorithm had ⟨x, z⟩, we replace it with K(x, z) and the algorithm now learns with the features ϕ.

Often, K(x, z) is inexpensive to calculate, even though ϕ(x) itself may be very expensive (or impossible) to calculate (perhaps
because it is an extremely high dimensional vector). In such settings, by using an efficient way to calculate K(x, z) in the algorithm,
an SVM can learn in the high dimensional feature space given byϕ, but without ever having to explicitly find or represent vectorsϕ(x).

7

An example: Suppose x, z ∈ Rn, and consider
K(x, z) = (xT z)2

This can also be written as

K(x, z) =

(
n∑

i=1
xizi

)(
n∑

i=1
xizi

)

=
n∑

i=1

n∑
j=1

xixjzizj

=
n∑

i,j=1
(xixj) (zizj)

= ϕ(x)T ϕ(z), where

ϕ(x) =

x1x1
x1x2
x1x3
x2x1
x2x2
x2x3
x3x1
x3x2
x3x3

(for n = 3)

Calculating the high-dimensionalϕ(x) requiresO(n2) time, while calculatingK(x, z) requires onlyO(n) time – linear in the dimen-
sion of the input attributes.

Consider a related kernel,

K(x, z) =
(
xT z + c

)2

=
(
xT z

)2 + 2c
(
xT z

)
+ c2

=
n∑

i,j=1
(xixj) (zizj) +

n∑
i=1

(√
2cxi

)(√
2czi

)
+ c2

ϕ(x) =

x1x1
x1x2
x1x3
x2x1
x2x2
x2x3
x3x1
x3x2
x3x3√
2cx1√
2cx2√
2cx3
c

, where the parameter c controls the relative weighting between the xi (first order) and the xixj (second order) terms.

More broadly, the kernel K(x, z) =
(
xT z + c

)d corresponds to a feature mapping to an
(

n + d
d

)
feature space, corresponding

of all monomials of the form xi1xi2 . . . xik
that are up to order d. Despite working inO(nd)-dimensional space, computingK(x, z)

still takes only O(n) time, and we never need to explicitly represent feature vectors in the very high dimensional feature space.

8

A slightly different view of kernels. Like the dot product, the kernel K(x, z) = ϕ(x)T ϕ(z) can be thought of as a similarity measure,
i.e. if ϕ(x) and ϕ(z) are close together, we expect K(x, z) to be large, and if ϕ(x) and ϕ(z) are far apart, we expect K(x, z)
to be small. Therefore, given a learning problem a good kernel to use would be a function represents the similarity of examples. For
example, the function

K(x, z) = exp
(
−∥x− z∥2

2σ2

)
might be a reasonable measure of the similarity of x and z, as it is near 1 when x and z are close, and near 0 when x and z are far
apart. However, is this a valid function to be used as a kernel? (In this case, yes, as this is the Gaussian kernel corresponding to
an infinite-dimensional feature mapping ϕ). But more broadly, given a function K , how can we tell if it’s a valid kernel; i.e. is there a
feature mapping ϕ such that K(x, z) = ϕ(x)T ϕ(z)∀x, z?

• Suppose that K is a valid kernel corresponding to some feature mapping ϕ
• consider some finite set of m points (not necessarily the training set)

{
x(1), . . . , x(m)}

• define the kernel matrix : a square, m-by-m matrix K s.t.

Kij = K
(

x(i), x(j)
)

• note that the notation K is overloaded to denote both the kernel function K(x, z) and the kernel matrix K
• if K is a valid kernel, then

Kij

= K
(

x(i), x(j)
)

= ϕ
(

x(i)
)T

ϕ
(

x(j)
)

= ϕ
(

x(j)
)T

ϕ
(

x(i)
)

= K
(

x(j), x(i)
)

= Kji

• therefore, K for a valid kernel is symmetric
• in addition, let ϕk(x) denote the k-th coordinate of the vector ϕ(x). Then, for any vector z:

zT Kz =
∑

i

∑
j

ziKijzj

=
∑

i

∑
j

ziϕ
(

x(i)
)T

ϕ
(

x(j)
)

zj def. K

=
∑

i

∑
j

zi

∑
k

ϕk

(
x(i)
)

ϕk

(
x(j)

)
zj

=
∑

k

∑
i

∑
j

ziϕk

(
x(i)
)

ϕk

(
x(j)

)
zj

=
∑

k

(∑
i

ziϕk

(
x(i)
))2

≥ 0

• therefore, if K is a valid kernel (i.e., it corresponds to some feature mapping ϕ), then the corresponding Kernel matrix
K ∈ Rm×m is symmetric positive semidefinite
• this is a necessary and sufficient condition for K to be a valid kernel (aka a Mercer kernel)
• Theorem (Mercer). LetK : Rn×Rn 7→ R be given. Then forK to be a valid (Mercer) kernel, it is necessary and

sufficient that for any
{

x(1), . . . , x(m)} , (m < ∞), the corresponding kernel matrix is symmetric and positive
semi-definite

9

• examples of kernels
• on theMNISTdigit recognition dataset, SVMswith a simple polynomial kernel or theGaussian kernel performed extremely

well
• this was surprising, since the input attributes were a 256-dimensional vector of pixel intensity without knowledge of

which pixels are adjacent to which other ones
• if objects to be classified are strings (e.g. sequence of amino acids), it is hard to construct a reasonable, “small” set of

features, especially if different strings have different lengths
• consider letting ϕ(x) be a feature vector that counts the number of occurrences of each length-k substring in x
• if considering English letters, there are 26k such strings→ ϕ(x) is 26k dimensional vector (to big to work

with efficiently)
• however, using (dynamic programming-ish) string matching algorithms, K(x, z) = ϕ(x)T ϕ(z) can be effi-

ciently computed
• therefore, can implicitly work in 26k-dimensional feature space, without ever explicitly computing feature vec-

tors in this space
• the kernel trick is applicable beyond SVMs

• can be applied to any learning algorithm that can be written in terms of only inner products ⟨x, z⟩ between input attribute
vectors by replacing the inner product with a kernel K(x, z)

8. Regularization and the non-separable case

• the derivation of the SVM so far assumes the data is linearly separable
• mapping data to a high dimensional feature space via ϕ increases the likelihood that the data is separable, but does not

guarantee it
• also, in some cases, finding a separating hyperplane might not be ideal, since it might be susceptible to outliers
• therefore, reformulate the problem using ℓ1 (lasso) regularization:

min
γ,w,b

1
2
∥w∥2 + C

m∑
i=1

ξi

s.t. y(i)
(

wT x(i) + b
)
≥ 1− ξi, i = 1, . . . , m

ξi ≥ 0, i = 1, . . . , m

• examples are now permitted to have (functional) margin less than 1:
• if an example has functional margin 1− ξi (ξ > 0), we pay a cost of the objective function being increased

by Cξi

• C controls the weighting between the goals of minimizing ∥w∥2 (which makes the margin large) and of
ensuring that most examples have functional margin at least 1

• the Lagrangian:

L (w, b, ξ, α, r) = 1
2

wT w + C

m∑
i=1

ξi −
m∑

i=1
αi

[
y(i) (xT w + b

)
− 1 + ξi

]
−

m∑
i=1

riξi

• to get the dual form:
• set derivatives w.r.t w and b to zero
• substitute back in and simplify

max
α

W (α) =
m∑

i=1
αi −

1
2

m∑
i,j=1

y(i)y(j)αiαj

⟨
x(i)x(j)

⟩
s.t. 0 ≤ αi ≤ C, i = 1, . . . , m

m∑
i=1

αiy
(i) = 0

• w in terms of αi’s is the same as the non-regularized case:

10

w =
m∑

i=1
αiy

(i)x(i),

so

wT x + b =
m∑

i=1
αiy

(i)
⟨

x(i), x
⟩

+ b

can still be used to make predictions once the dual problem is solved. - note that adding ℓ1 regularization only has the
effect of changing 0 ≤ αi to 0 ≤ αi ≤ C - the calculation for b∗ also has to be modified
• the KKT dual-complementarity conditions:

αi = 0 =⇒ y(i)
(

wT x(i) + b
)
≥ 1

αi = C =⇒ y(i)
(

wT x(i) + b
)
≤ 1

0 < αi < C =⇒ y(i)
(

wT x(i) + b
)

= 1

To solve the dual problem, we use the sequential minimal optimization (SMO) algorithm.

9. The SMO algorithm

• SMO, by John Platt, is an efficient way of solving the dual problem in the derivation of the SVM
• first, a digression about coordinate ascent:

9.1 Coordinate ascent

• consider the unconstrained optimization problem

max
α

W (α1, α2, . . . , αm)

• gradient ascent and Newton’s method could both solve this
• now we consider coordinate ascent :

• Loop until convergence:
• For i = 1, . . . , m,
• αi ← arg maxα̂i

W (α1, . . . , αi=1, α̂i, αi+1, . . . , αm)
• in the innermost loop, W is reoptimized w.r.t just the parameter αi, holding all other variables fixed
• when W is of a form s.t. the arg max can be found efficiently, coordinate ascent can be fairly efficient

9.2 SMO

• the dual optimization problem for SVM with ℓ1 regularization:

max
α

W (α) =
m∑

i=1
αi −

1
2

m∑
i,j=1

y(i)y(j)αiαj

⟨
x(i)x(j)

⟩
s.t. 0 ≤ αi ≤ C, i = 1, . . . , m

m∑
i=1

αiy
(i) = 0

• suppose we have a set of αi’s that satisfy the above constraints
• then suppose we want to take a coordinate ascent step optimizing w.r.t α1 holding α2, . . . , αm fixed. Progress is not

possible, because:

11

α1y(1) = −
m∑

i=2
αiy

(i)

α1 = −y(1)
m∑

i=2
αiy

(i) remember y(1) ∈ {−1, 1}

• α1 is uniquely determined by the otherαi’s- thus, to update theαi’s, we must update at least two of them simultaneously
to keep satisfying the constraints, motivating the SMO algorithm:
• repeat until convergence:

1. Select some pair αi and αj to update next (using some heuristic that tries to pick the two that will allow the
biggest progress towards the global max)

2. Reoptimize W (α) w.r.t. αi and αj , holding the other αk ’s (k ̸= i, j) fixed
• suppose we currently have αi’s that satisfy the constraints
• suppose we decide to hold α3, . . . , αm fixed, and reoptimize W (α1, α2, . . . , αm) w.r.t. α1 and α2

α1y(1) + α2y(2) = −
m∑

i=3
αiy

(i) RHS is constant, set to ζ

α1y(1) + α2y(2) = ζ

• See the figure in the notes:
• α1 and α2 must lie within the box [0, C]× [0, C]
• in order to lie within the box and satisfy α1y(1) + α2y(2) = ζ , L ≤ α2 ≤ H , where L is a lower

bound
• get α1 as a function of α2:

α1y(1) + α2y(2) = ζ

α1y(1) = ζ − α2y(2) y(1) ∈ {−1, 1}

α1 =
(

ζ − α2y(2)
)

y(1)

• substitute back into W (α):

W (α1, α2, . . . , αm) = W
((

ζ − α2y(2)
)

y(1), α2, . . . , αm

)
• this is a quadratic function in α2, i.e. it can be expressed aα2

2 + bα2 + c
• ignoring the “box” constraints, this function can easily be solving by setting the derivative to zero and solving
• let αnew, unclipped

2 denote the resulting value of α2
• we can find the optimal α2 by “clipping” it to the [L, H] interval specified by the box constraint:

αnew
2 =

H if αnew, unclipped

2 > H

αnew, unclipped
2 if L ≤ αnew, unclipped

2 ≤ H

L if αnew, unclipped
2 < L

• having solved for αnew
2 , solve for αnew

1
• α1 =

(
ζ − α2y(2)) y(1)

• details left unresolved here:
• heuristic for choosing next αi, αj to update
• how to update b

12

	Support Vector Machines
	1. Margins: Intuition
	2. Notation
	3. Functional and geometric margins
	4. The optimal margin classifier
	5. Digression: Lagrange duality
	6. Optimal margin classifiers
	7. Kernels
	8. Regularization and the non-separable case
	9. The SMO algorithm

