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basic probability bounds

e a basic question in probability, statistics, and machine learning:
e given a random variable Z with expectation E[Z], how likely is Z to be close to its expectation?
e more precisely, how close is it likely to be?
e therefore, we would like to compute bounds of the following form for ¢ > 0

P(Z > E[Z] +t)and P(Z < E[Z] — t)

e Markov’s inequality
e Let Z > 0 be a non-negative random variable. Then forall ¢ > 0,
E|Z
Pz <B4
e i.e., Markov’s inequality puts a bound on the probability that a random variable is greater than a non-negative value ¢
e Proof:
e note: P(Z >t)=E[1{Z > t}]
e consider the two possible cases for Z:
e ifZ >t thenl{Z >t} =1:

Z >t
Z
—>1
7 =
Z
?21{Z>t}
o ifZ <t thenl{Z >t} =0:
Z
?20 Zandtboth > 0
A
S21{z24
° soingeneral,%zl{Zzt}
e thus:
P(Z>t)=E[1{Z>1}]
Z
P(Z>t)§E[t]
E[Z]


http://cs229.stanford.edu/materials.html

e note: this is the proof given in the notes, but this proof from Wolfram Alpha makes more sense to me
e essentially all other bounds on probabilities are variations on Markov’s inequality
o the first variation uses second moments - the variance - of a random variable rather than simply its mean, and is known
as Chebyshev’s inequality
e Chebyshev’s inequality
e Let Z be any random variable with Var(Z) < co. Then, fort > 0,

Var(Z)
2 2
P((z-EZ) 2 ) <=
or equivalently,
Var(Z)

P(Z~E[Z] > 1) < =5

e i.e., Chebyshev’s inequality puts a bound on the probability that a random variable is greater than ¢ away from its expected
value E[Z]

e Proof:

P((z-E2]) > )

2
_ E[(Z - E[2)]
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Var(Z
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S e
e anice consequence of Chebyshev’s inequality:
e averages of random variables with finite variance converge to their mean (this is the weak law of large numbers)
e anexample:
e suppose Z; are i.i.d. with finite variance and E[Z;] = 0
= e
o defne Z = > " Z;
e then:

by Markov’s inequality
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= Var (rll ; ZZ-> def. Z
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e in particular, for any t > 0 (remember E[Z;] = 0):
S
n

1
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i=1

° so,P(|Z| Zt) — Oforanyt > 0

nt?

Var (Z1) . .
>t < ——= Chebyshev’s inequality

moment generating functions

e often, we want sharper - even exponential - bounds on the probability that a random variable exceeds its expectation by much
e to accomplish this, we need a stronger condition than finite variance
e moment generating functions are natural candidates for this condition:
e for a random variable Z, the moment generating function of Z is the function:


http://mathworld.wolfram.com/MarkovsInequality.html
https://en.wikipedia.org/wiki/Law_of_large_numbers#Proof_using_Chebyshev.27s_inequality

My(2) = E[exp(AZ)]

e the moment generating function may be infinite for some A

Chernoff bounds

e Chernoff bounds use moment generating functions to give exponential deviation bounds
e Let Z be any random variable
e then, foranyt > 0

P(Z>E[Z]+t) <minE [e)‘(Z*E[ZD] e M
A>0

< in M — At
< min Mz_g(z) (Ae

and
P(Z <E[Z]-t) < minE [eME[Z]*Z)} e~
< 3 _At
< min Mgz1—z (M) e

e proof of the first inequality (the second inequality is identical):
e forany A > 0:
o 7 >E[Z]+tiffer > AEEIHAM g AZ-EZ]) > oM
e thus,

P(Z~E[Z] 2 1) = P ()7 > M)
<E [e’\(Z’E[ZD} e M by Markov’s inequality

e since the choice of A > 0 did not matter, we can take the best one by minimizing the right side of the bound
w.rt A
e note that the bound still holds at A = 0
e the important result: Chernoff bounds “play nicely” with summations
e this is a consequence of the moment generating function
e assume that Z; are independent, then:
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e this means that when we calculate a Chernoff bound of a sum of i.i.d. variables, we only need to calculate
the moment generating function for one of them:
e suppose Z; are i.i.d. and (for simplicity) mean zero. Then:



P <Z Z; > t) <E [6)\(27:1 Z'i)} e~ Chernoff bound with E [Z;] = 0

i=1
< Mzn 7 (N)e ™ rewrite in terms of MGF
i=1""
n
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moment generating function examples

e now we give several examples of moment generating functions, which enable us to give a few nice deviation inequalities as a
result
o for all of our examples, we will have very convenient bounds of the form

2,2
Mz(\) =E[e*] < (CZ)\ ) forall A € R

e forsome C' € R (which depends on the distribution of Z)
e this form is ‘nice’ for applying Chernoff bounds
e begin with the classical normal distribution, Z ~ A (O, 02). Then,

Ao

E [exp (A\Z)] = exp ( 22 2)

e DERIVATION GOES HERE
e asecond example is the Rademacher random variable, aka the random sign variable:

e let S = 1 with probability 2 and S = —1 with probability 3

e derivation:



AS = (AS)" L &t
E[e*] =E Z I Taylor expansion: e* = Z o
k=0 —
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e we can apply this inequality in a Chernoff bound to see how large a sum of i.i.d. random signs is likely to be:
o Z=>3 "S5 whereS; € {£1},s0E[Z] =0

P(Z>t)<

minimize w.r.t. A :

t2
P(Z >t) <exp (_2n>

- / 1 / 1
P(ZSZ-Z 2n10g5>§5 lett = 2n10g5

i=1
e 50, Z =Y. ,5; = O(y/n) with extremely high probability- the sum of 1 independent random signs is essentially
never larger than O (y/n)

Hoeffding’s lemma and Hoeffding’s inequality

e Hoeffding’s inequality: a powerful technique for bounding the probability that sums of bounded random variables are too large

or too small
e perhaps the most important inequality in learning theory
e Let Zy,...,Z, beindependent bounded random variables with Z; € [a, b] for all 4, where —00 < a < b < oo.
Then:



and
1 & 2nt?
< Z Z;—E[Z;]) < —t> < exp (—“)
n— (b—a)
forallt > 0

e proof of Hoeffding’s inequality using Chernoff bounds and Hoeffding’s lemma:
e Hoeffding’s lemma:
e Let Z be a bounded random variable with Z € [a, b]. Then,

E [exp (A (Z — E[2]))] < <A2“8”)2> forall A € R

e A proof of a slightly weaker version of this lemma with a factor of 2 instead of 8 using the random sign moment
generating bound and Jensen’s inequality
e Jensen’s inequality states: if f : R — R is a convex function, then:

f(E[Z]) <E[f(Z)]
e to remember this inequality:
o think of f(t) = ¢2
e note thatif E[Z] = 0, then f (E[Z]) = 0, while we generally have E[Z2] > 0
e we will use a technique in probability theory known as symmetrization (this is a common technique in
probability theory, machine learning, and statistics):
o Let Z' be anindependent copy of Z with the same distribution, so that Z’ € [a, b] and E[Z'] = E[Z],
but Z and Z' are independent. Then:
Ez [exp (A (Z — Ez[Z]))]
=Eyz[exp(A(Z —Ez[Z']))] EgzandEyz indicate expectations w.r.t. Z and Z’
<Ez[Ez exp(A(Z —Z"))] Jensen’sinequality appliedto f(z) = e~

® s0, we have:

Elexp (A (Z — E[Z]))] < E[exp (A (Z — Z))]

e now, we note the following: the difference Z — Z' is symmetric about zero, so thatif S € {—1,1} isa
random sign variable, then S(Z — Z') has exactly the same distribution as Z — Z’

Ez.z lexp(AN(Z = Z'))] = Bz, 21,5 [exp (AS (Z — Z"))]
=Ezz [Es[exp (NS (Z - Z'))] | Z,Z']

e now, use inequality (3) from the notes (i.e., E [e)‘s] < exp (%) vV €R):
2 Z Z/
Eslexp(AS (2~ 2)) | 2,2/ < e (A )

e by assumption, we have | Z — Z’| < (b—a),s0 (Z — Z') < ( 2 giving:

Ez.z [exp (A (Z = 2'))] < exp (Mb))



o this is the result, with a factor of 2 instead of 8
e now, use Hoeffding’s lemma with the Chernoff bound to prove Hoeffding’s inequality:

p(ii(z E[Z])>t> P(i(Z E[Z})>nt>

i=1 i=1

(o)

A(Z,;—]E[ZA)}) o~ nt

A2(b a)2

e ) et Hoeffding’s lemma

e~ Chernoff bound

= H:]

(e
“(

i=1

e rewriting and minimizing over A > 0:

P <TlL i (Zi *E[Zi]) > t) < r)\n;gexp (W . Ant)
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