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My notes on John Duchi’s CS229 supplemental notes on Hoeffding’s inequality.

basic probability bounds

• a basic question in probability, statistics, and machine learning:
• given a random variable Z with expectation E[Z], how likely is Z to be close to its expectation?
• more precisely, how close is it likely to be?
• therefore, we would like to compute bounds of the following form for t ≥ 0

P (Z ≥ E[Z] + t) and P (Z ≤ E[Z] − t)
• Markov’s inequality

• Let Z ≥ 0 be a non-negative random variable. Then for all t ≥ 0,

P (Z ≥ t) ≤ E[Z]
t

• i.e., Markov’s inequality puts a bound on the probability that a random variable is greater than a non-negative value t
• Proof:

• note: P (Z ≥ t) = E [1 {Z ≥ t}]
• consider the two possible cases for Z :

• if Z ≥ t, then 1{Z ≥ t} = 1:

Z ≥ t

Z

t
≥ 1

Z

t
≥ 1{Z ≥ t}

• if Z < t, then 1{Z ≥ t} = 0:

Z

t
≥ 0 Z and t both > 0

Z

t
≥ 1{Z ≥ t}

• so in general, Z
t ≥ 1{Z ≥ t}

• thus:

P (Z ≥ t) = E [1 {Z ≥ t}]

P (Z ≥ t) ≤ E
[

Z

t

]
P (Z ≥ t) ≤ E[Z]

t
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• note: this is the proof given in the notes, but this proof from Wolfram Alpha makes more sense to me
• essentially all other bounds on probabilities are variations on Markov’s inequality

• the first variation uses second moments – the variance – of a random variable rather than simply its mean, and is known
as Chebyshev’s inequality

• Chebyshev’s inequality
• Let Z be any random variable with Var(Z) < ∞. Then, for t ≥ 0,

P
(

(Z − E[Z])2 ≥ t2
)

≤ Var(Z)
t2

or equivalently,

P (|Z − E[Z]| ≥ t) ≤ Var(Z)
t2

• i.e., Chebyshev’s inequality puts a bound on the probability that a random variable is greater than t away from its expected
value E[Z]

• Proof:

P
(

(Z − E[Z])2 ≥ t2
)

≤ E[(Z − E[Z])2]
t2 by Markov’s inequality

≤ Var(Z)
t2

• a nice consequence of Chebyshev’s inequality:
• averages of random variables with finite variance converge to their mean (this is the weak law of large numbers)
• an example:

• suppose Zi are i.i.d. with finite variance and E[Zi] = 0
• define Z̄ = 1

n

∑n
i=1 Zi

• then:

Var
(
Z̄
)

= Var

(
1
n

n∑
i=1

Zi

)
def. Z̄

= 1
n2 Var

(
n∑

i=1
Zi

)
property of variance

= nVar (Z1)
n2 Var (Zi) are all equal, since Zi are i.i.d.

= Var (Z1)
n

• in particular, for any t ≥ 0 (remember E[Zi] = 0):

P

(∣∣∣∣∣ 1n
n∑

i=1
Zi

∣∣∣∣∣ ≥ t

)
≤ Var (Z1)

nt2 Chebyshev’s inequality

• so, P
(∣∣Z̄∣∣ ≥ t

)
→ 0 for any t > 0

moment generating functions

• often, we want sharper – even exponential – bounds on the probability that a random variable exceeds its expectation by much
• to accomplish this, we need a stronger condition than finite variance
• moment generating functions are natural candidates for this condition:

• for a random variable Z , the moment generating function of Z is the function:
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MZ(λ) := E [exp(λZ)]

• the moment generating function may be infinite for some λ

Chernoff bounds

• Chernoff bounds use moment generating functions to give exponential deviation bounds
• Let Z be any random variable
• then, for any t ≥ 0

P (Z ≥ E[Z] + t) ≤ min
λ≥0

E
[
eλ(Z−E[Z])

]
e−λt

≤ min
λ≥0

MZ−E[Z] (λ) e−λt

and

P (Z ≤ E[Z] − t) ≤ min
λ≥0

E
[
eλ(E[Z]−Z)

]
e−λt

≤ min
λ≥0

ME[Z]−Z (λ) e−λt

• proof of the first inequality (the second inequality is identical):
• for any λ > 0:

• Z ≥ E[Z] + t iff eλZ ≥ eλE[Z]+λt, i.e. eλ(Z−E[Z]) ≥ eλt

• thus,

P (Z − E[Z] ≥ t) = P
(

eλ(Z−E[Z]) ≥ eλt
)

≤ E
[
eλ(Z−E[Z])

]
e−λt by Markov’s inequality

• since the choice of λ > 0 did not matter, we can take the best one by minimizing the right side of the bound
w.r.t. λ
• note that the bound still holds at λ = 0

• the important result: Chernoff bounds “play nicely” with summations
• this is a consequence of the moment generating function
• assume that Zi are independent, then:

MZ1+···+Zn
(λ)

= E

[
exp

(
λ

n∑
i=1

Zi

)]
def. MGF

= E

[
n∏

i=1
exp (λZi)

]
just exponent properties

=
n∏

i=1
E [exp (λZi)] Zi are independent

=
n∏

i=1
MZi

(λ)

• this means that when we calculate a Chernoff bound of a sum of i.i.d. variables, we only need to calculate
the moment generating function for one of them:

• suppose Zi are i.i.d. and (for simplicity) mean zero. Then:

3



P

(
n∑

i=1
Zi ≥ t

)
≤ E

[
eλ(
∑n

i=1
Zi)
]

e−λt Chernoff bound with E [Zi] = 0

≤ M∑n

i=1
Zi

(λ)e−λt rewrite in terms of MGF

≤
n∏

i=1
MZi(λ)e−λt the rule derived above

≤
n∏

i=1
E [exp (λZi)] e−λt def. MGF

≤
(
E
[
eλZ1

])n
e−λt Zi are i.i.d.

moment generating function examples

• now we give several examples of moment generating functions, which enable us to give a few nice deviation inequalities as a
result

• for all of our examples, we will have very convenient bounds of the form

MZ(λ) = E
[
eλZ

]
≤
(

C2λ2

2

)
for all λ ∈ R

• ,for some C ∈ R (which depends on the distribution of Z)
• this form is ‘nice’ for applying Chernoff bounds

• begin with the classical normal distribution, Z ∼ N
(
0, σ2). Then,

E [exp (λZ)] = exp
(

λ2σ2

2

)
• DERIVATION GOES HERE

• a second example is the Rademacher random variable, aka the random sign variable:

• let S = 1 with probability 1
2 and S = −1 with probability 1

2 :

E
[
eλS
]

≤
(

λ2

2

)
• derivation:
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E
[
eλS
]

= E

[ ∞∑
k=0

(λS)k

k!

]
Taylor expansion: ex =

∞∑
k=0

xk

k!

=
∞∑

k=0

λkE
[
Sk
]

k!

=
∑

k=0,2,4,...

λk

k!
for k odd, E

[
Sk
]

= 0; for k even, E
[
Sk
]

= 1

=
∞∑

k=0

λ2k

(2k)!

≤
∞∑

k=0

(
λ2)k

2k · k!
(2k)! ≥ 2k · k! for all k = 0, 1, 2, . . .

≤
∞∑

k=0

(
λ2

2

)k 1
k!

≤ exp
(

λ2

2

)
Taylor expansion

• we can apply this inequality in a Chernoff bound to see how large a sum of i.i.d. random signs is likely to be:
• Z =

∑n
i=1 Si, where Si ∈ {±1}, so E[Z] = 0

P (Z > t) ≤ E
[
eλZ

]
eλt

≤ E
[
eλS1

]n
e−λt

≤ exp
(

nλ2

2

)
e−λt

minimize w.r.t. λ :
∂

∂λ

(
nλ2

2
− λt

)
= nλ − t = 0

λ = t

n

P (Z ≥ t) ≤ exp
(

− t2

2n

)
P

(
n∑

i=1
Si ≥

√
2n log 1

δ

)
≤ δ let t =

√
2n log 1

δ

• so, Z =
∑n

i=1 Si = O (
√

n) with extremely high probability- the sum of n independent random signs is essentially
never larger than O(

√
n)

Hoeffding’s lemma and Hoeffding’s inequality

• Hoeffding’s inequality: a powerful technique for bounding the probability that sums of bounded random variables are too large
or too small

• perhaps the most important inequality in learning theory
• Let Z1, . . . , Zn be independent bounded random variables with Zi ∈ [a, b] for all i, where −∞ < a < b < ∞.

Then:
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P

(
1
n

n∑
i=1

(Zi − E [Zi]) ≥ t

)
≤ exp

(
− 2nt2

(b − a)2

)

and

P

(
1
n

n∑
i=1

(Zi − E [Zi]) ≤ −t

)
≤ exp

(
− 2nt2

(b − a)2

)

for all t ≥ 0
• proof of Hoeffding’s inequality using Chernoff bounds and Hoeffding’s lemma:

• Hoeffding’s lemma:
• Let Z be a bounded random variable with Z ∈ [a, b]. Then,

E [exp (λ (Z − E[Z]))] ≤

(
λ2 (b − a)2

8

)
for all λ ∈ R

• A proof of a slightly weaker version of this lemma with a factor of 2 instead of 8 using the random sign moment
generating bound and Jensen’s inequality
• Jensen’s inequality states: if f : R → R is a convex function, then:

f (E[Z]) ≤ E [f(Z)]
• to remember this inequality:

• think of f(t) = t2

• note that if E[Z] = 0, then f (E[Z]) = 0, while we generally have E[Z2] > 0
• we will use a technique in probability theory known as symmetrization (this is a common technique in

probability theory, machine learning, and statistics):
• Let Z ′ be an independent copy of Z with the same distribution, so that Z ′ ∈ [a, b] andE[Z ′] = E[Z],

but Z and Z ′ are independent. Then:

EZ [exp (λ (Z − EZ [Z]))]
= EZ [exp (λ (Z − EZ′ [Z ′]))] EZ and EZ′ indicate expectations w.r.t. Z and Z ′

≤ EZ [EZ′ exp (λ (Z − Z ′))] Jensen’s inequality applied to f(x) = e−x

• so, we have:

E[exp (λ (Z − E[Z]))] ≤ E [exp (λ (Z − Z ′))]
• now, we note the following: the difference Z − Z ′ is symmetric about zero, so that if S ∈ {−1, 1} is a

random sign variable, then S(Z − Z ′) has exactly the same distribution as Z − Z ′

EZ,Z′ [exp (λ (Z − Z ′))] = EZ,Z′,S [exp (λS (Z − Z ′))]
= EZ,Z′ [ES [exp (λS (Z − Z ′))] | Z, Z ′]

• now, use inequality (3) from the notes (i.e., E
[
eλS
]

≤ exp
(

λ2

2

)
∀ ∈ R):

ES [exp (λS (Z − Z ′)) | Z, Z ′] ≤ exp

(
λ2 (Z − Z ′)2

2

)
• by assumption, we have |Z − Z ′| ≤ (b − a), so (Z − Z ′) ≤ (b − a)2, giving:

EZ,Z′ [exp (λ (Z − Z ′))] ≤ exp

(
λ2 (b − a)2

2

)
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• this is the result, with a factor of 2 instead of 8
• now, use Hoeffding’s lemma with the Chernoff bound to prove Hoeffding’s inequality:

P

(
1
n

n∑
i=1

(Zi − E [Zi]) ≥ t

)
= P

(
n∑

i=1
(Zi − E [Zi]) ≥ nt

)

≤ E

[
exp

(
λ

n∑
i=1

(Zi − E [Zi])

)]
e−λnt Chernoff bound

≤

(
n∏

i=1
E
[
eλ(Zi−E[Zi])

])
e−λnt

≤

(
n∏

i=1
e

λ2(b−a)2
8

)
e−λnt Hoeffding’s lemma

• rewriting and minimizing over λ ≥ 0:

P

(
1
n

n∑
i=1

(Zi − E [Zi]) ≥ t

)
≤ min

λ≥0
exp

(
nλ2 (b − a)2

8
− λnt

)

≤ exp

(
− 2nt2

(b − a)2

)
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