CS229 hoeffding inequality notes

James Chuang

April 28, 2017

Contents

basic probability bounds 1
moment generating functions 2
Hoeffding's lemma and Hoeffding's inequality 5

My notes on John Duchi's CS229 supplemental notes on Hoeffding's inequality.

basic probability bounds

- a basic question in probability, statistics, and machine learning:
- given a random variable Z with expectation $\mathbb{E}[Z]$, how likely is Z to be close to its expectation?
- more precisely, how close is it likely to be?
- therefore, we would like to compute bounds of the following form for $t \geq 0$

$$
P(Z \geq \mathbb{E}[Z]+t) \text { and } P(Z \leq \mathbb{E}[Z]-t)
$$

- Markov's inequality
- Let $Z \geq 0$ be a non-negative random variable. Then for all $t \geq 0$,

$$
P(Z \geq t) \leq \frac{\mathbb{E}[Z]}{t}
$$

- i.e., Markov's inequality puts a bound on the probability that a random variable is greater than a non-negative value t
- Proof:
- note: $P(Z \geq t)=\mathbb{E}[\mathbf{1}\{Z \geq t\}]$
- consider the two possible cases for Z :
- if $Z \geq t$, then $\mathbf{1}\{Z \geq t\}=1$:

$$
\begin{aligned}
& Z \geq t \\
& \frac{Z}{t} \geq 1 \\
& \frac{Z}{t} \geq \mathbf{1}\{Z \geq t\}
\end{aligned}
$$

- if $Z<t$, then $\mathbf{1}\{Z \geq t\}=0$:

$$
\begin{array}{ll}
\frac{Z}{t} \geq 0 \quad \text { Z and } \mathrm{t} \text { both }>0 \\
\frac{Z}{t} \geq \mathbf{1}\{Z \geq t\}
\end{array}
$$

- so in general, $\frac{Z}{t} \geq \mathbf{1}\{Z \geq t\}$
- thus:

$$
\begin{aligned}
& P(Z \geq t)=\mathbb{E}[\mathbf{1}\{Z \geq t\}] \\
& P(Z \geq t) \leq \mathbb{E}\left[\frac{Z}{t}\right] \\
& P(Z \geq t) \leq \frac{\mathbb{E}[Z]}{t}
\end{aligned}
$$

- note: this is the proof given in the notes, but this proof from Wolfram Alpha makes more sense to me
- essentially all other bounds on probabilities are variations on Markov's inequality
- the first variation uses second moments - the variance - of a random variable rather than simply its mean, and is known as Chebyshev's inequality
- Chebyshev's inequality
- Let Z be any random variable with $\operatorname{Var}(Z)<\infty$. Then, for $t \geq 0$,

$$
\begin{gathered}
P\left((Z-\mathbb{E}[Z])^{2} \geq t^{2}\right) \leq \frac{\operatorname{Var}(Z)}{t^{2}} \\
\text { or equivalently, } \\
P(|Z-\mathbb{E}[Z]| \geq t) \leq \frac{\operatorname{Var}(Z)}{t^{2}}
\end{gathered}
$$

- i.e., Chebyshev's inequality puts a bound on the probability that a random variable is greater than t away from its expected value $\mathbb{E}[Z]$
- Proof:

$$
\begin{aligned}
& P\left((Z-\mathbb{E}[Z])^{2} \geq t^{2}\right) \\
\leq & \frac{\mathbb{E}\left[(Z-\mathbb{E}[Z])^{2}\right]}{t^{2}} \quad \text { by Markov's inequality } \\
\leq & \frac{\operatorname{Var}(Z)}{t^{2}}
\end{aligned}
$$

- a nice consequence of Chebyshev's inequality:
- averages of random variables with finite variance converge to their mean (this is the weak law of large numbers)
- an example:
- suppose Z_{i} are i.i.d. with finite variance and $\mathbb{E}\left[Z_{i}\right]=0$
- define $\bar{Z}=\frac{1}{n} \sum_{i=1}^{n} Z_{i}$
- then:

$$
\begin{aligned}
& \operatorname{Var}(\bar{Z}) \\
&= \operatorname{Var}\left(\frac{1}{n} \sum_{i=1}^{n} Z_{i}\right) \\
& \text { def. } \bar{Z} \\
&= \frac{1}{n^{2}} \operatorname{Var}\left(\sum_{i=1}^{n} Z_{i}\right) \\
&= \frac{n \operatorname{Var}\left(Z_{1}\right)}{n^{2}} \\
&= \frac{\operatorname{Var}\left(Z_{1}\right)}{n}
\end{aligned} \quad \operatorname{Var}\left(Z_{i}\right) \text { are all equal, since } Z_{i} \text { are i.i.d. }
$$

- in particular, for any $t \geq 0$ (remember $\mathbb{E}\left[Z_{i}\right]=0$):

$$
P\left(\left|\frac{1}{n} \sum_{i=1}^{n} Z_{i}\right| \geq t\right) \leq \frac{\operatorname{Var}\left(Z_{1}\right)}{n t^{2}} \quad \text { Chebyshev's inequality }
$$

- so, $P(|\bar{Z}| \geq t) \rightarrow 0$ for any $t>0$

moment generating functions

- often, we want sharper - even exponential - bounds on the probability that a random variable exceeds its expectation by much
- to accomplish this, we need a stronger condition than finite variance
- moment generating functions are natural candidates for this condition:
- for a random variable Z, the moment generating function of Z is the function:

$$
M_{Z}(\lambda):=\mathbb{E}[\exp (\lambda Z)]
$$

- the moment generating function may be infinite for some λ

Chernoff bounds

- Chernoff bounds use moment generating functions to give exponential deviation bounds
- Let Z be any random variable
- then, for any $t \geq 0$

$$
\begin{aligned}
P(Z \geq \mathbb{E}[Z]+t) & \leq \min _{\lambda \geq 0} \mathbb{E}\left[e^{\lambda(Z-\mathbb{E}[Z])}\right] e^{-\lambda t} \\
& \leq \min _{\lambda \geq 0} M_{Z-\mathbb{E}[Z]}(\lambda) e^{-\lambda t}
\end{aligned}
$$

and

$$
\begin{aligned}
P(Z \leq \mathbb{E}[Z]-t) & \leq \min _{\lambda \geq 0} \mathbb{E}\left[e^{\lambda(\mathbb{E}[Z]-Z)}\right] e^{-\lambda t} \\
& \leq \min _{\lambda \geq 0} M_{\mathbb{E}[Z]-Z}(\lambda) e^{-\lambda t}
\end{aligned}
$$

- proof of the first inequality (the second inequality is identical):
- for any $\lambda>0$:
- $Z \geq \mathbb{E}[Z]+t$ iff $e^{\lambda Z} \geq e^{\lambda \mathbb{E}[Z]+\lambda t}$, i.e. $e^{\lambda(Z-\mathbb{E}[Z])} \geq e^{\lambda t}$
- thus,

$$
\begin{aligned}
P(Z-\mathbb{E}[Z] \geq t) & =P\left(e^{\lambda(Z-\mathbb{E}[Z])} \geq e^{\lambda t}\right) \\
& \leq \mathbb{E}\left[e^{\lambda(Z-\mathbb{E}[Z])}\right] e^{-\lambda t} \quad \text { by Markov's inequality }
\end{aligned}
$$

- since the choice of $\lambda>0$ did not matter, we can take the best one by minimizing the right side of the bound w.r.t. λ
- note that the bound still holds at $\lambda=0$
- the important result: Chernoff bounds "play nicely" with summations
- this is a consequence of the moment generating function
- assume that Z_{i} are independent, then:

$$
\begin{aligned}
& M_{Z_{1}+\cdots+Z_{n}}(\lambda) \\
= & \mathbb{E}\left[\exp \left(\lambda \sum_{i=1}^{n} Z_{i}\right)\right] \\
= & \text { def. MGF } \\
= & \mathbb{E}\left[\prod_{i=1}^{n} \exp \left(\lambda Z_{i}\right)\right] \quad \text { just exponent properties } \\
= & \prod_{i=1}^{n} \mathbb{E}\left[\exp \left(\lambda Z_{i}\right)\right] \quad Z_{i} \text { are independent } \\
= & \prod_{i=1}^{n} M_{Z_{i}}(\lambda)
\end{aligned}
$$

- this means that when we calculate a Chernoff bound of a sum of i.i.d. variables, we only need to calculate the moment generating function for one of them:
- suppose Z_{i} are i.i.d. and (for simplicity) mean zero. Then:

$$
\begin{aligned}
P\left(\sum_{i=1}^{n} Z_{i} \geq t\right) & \leq \mathbb{E}\left[e^{\lambda\left(\sum_{i=1}^{n} Z_{i}\right)}\right] e^{-\lambda t} & & \text { Chernoff bound with } \mathbb{E}\left[Z_{i}\right]=0 \\
& \leq M_{\sum_{i=1}^{n} Z_{i}}(\lambda) e^{-\lambda t} & & \text { rewrite in terms of MGF } \\
& \leq \prod_{i=1}^{n} M_{Z_{i}}(\lambda) e^{-\lambda t} & & \text { the rule derived above } \\
& \leq \prod_{i=1}^{n} \mathbb{E}\left[\exp \left(\lambda Z_{i}\right)\right] e^{-\lambda t} & & \text { def. MGF } \\
& \leq\left(\mathbb{E}\left[e^{\lambda Z_{1}}\right]\right)^{n} e^{-\lambda t} & & Z_{i} \text { are i.i.d. }
\end{aligned}
$$

moment generating function examples

- now we give several examples of moment generating functions, which enable us to give a few nice deviation inequalities as a result
- for all of our examples, we will have very convenient bounds of the form

$$
M_{Z}(\lambda)=\mathbb{E}\left[e^{\lambda Z}\right] \leq\left(\frac{C^{2} \lambda^{2}}{2}\right) \quad \text { for all } \lambda \in \mathbb{R}
$$

- ,for some $C \in \mathbb{R}$ (which depends on the distribution of Z)
- this form is 'nice' for applying Chernoff bounds
- begin with the classical normal distribution, $Z \sim \mathcal{N}\left(0, \sigma^{2}\right)$. Then,

$$
\mathbb{E}[\exp (\lambda Z)]=\exp \left(\frac{\lambda^{2} \sigma^{2}}{2}\right)
$$

- DERIVATION GOES HERE

- a second example is the Rademacher random variable, aka the random sign variable:
- let $S=1$ with probability $\frac{1}{2}$ and $S=-1$ with probability $\frac{1}{2}$:

$$
\mathbb{E}\left[e^{\lambda S}\right] \leq\left(\frac{\lambda^{2}}{2}\right)
$$

- derivation:

$$
\begin{aligned}
\mathbb{E}\left[e^{\lambda S}\right] & =\mathbb{E}\left[\sum_{k=0}^{\infty} \frac{(\lambda S)^{k}}{k!}\right] \quad \text { Taylor expansion: } e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!} \\
& =\sum_{k=0}^{\infty} \frac{\lambda^{k} \mathbb{E}\left[S^{k}\right]}{k!} \\
& =\sum_{k=0,2,4, \ldots} \frac{\lambda^{k}}{k!} \quad \text { for } k \text { odd, } \mathbb{E}\left[S^{k}\right]=0 ; \text { for } k \text { even, } \mathbb{E}\left[S^{k}\right]=1 \\
& =\sum_{k=0}^{\infty} \frac{\lambda^{2 k}}{(2 k)!} \\
& \leq \sum_{k=0}^{\infty} \frac{\left(\lambda^{2}\right)^{k}}{2^{k} \cdot k!} \quad(2 k)!\geq 2 k \cdot k!\text { for all } k=0,1,2, \ldots \\
& \leq \sum_{k=0}^{\infty}\left(\frac{\lambda^{2}}{2}\right)^{k} \frac{1}{k!} \quad \\
& \leq \exp \left(\frac{\lambda^{2}}{2}\right) \quad \quad \text { Taylor expansion }
\end{aligned}
$$

- we can apply this inequality in a Chernoff bound to see how large a sum of i.i.d. random signs is likely to be:
- $Z=\sum_{i=1}^{n} S_{i}$, where $S_{i} \in\{ \pm 1\}$, so $\mathbb{E}[Z]=0$

$$
\begin{aligned}
P(Z>t) & \leq \mathbb{E}\left[e^{\lambda Z}\right] e^{\lambda t} \\
& \leq \mathbb{E}\left[e^{\lambda S_{1}}\right]^{n} e^{-\lambda t} \\
& \leq \exp \left(\frac{n \lambda^{2}}{2}\right) e^{-\lambda t}
\end{aligned}
$$

minimize w.r.t. λ :

$$
\begin{gathered}
\frac{\partial}{\partial \lambda}\left(\frac{n \lambda^{2}}{2}-\lambda t\right) \\
=n \lambda-t=0 \\
\lambda=\frac{t}{n} \\
P(Z \geq t) \leq \exp \left(-\frac{t^{2}}{2 n}\right) \\
P\left(\sum_{i=1}^{n} S_{i} \geq \sqrt{2 n \log \frac{1}{\delta}}\right) \leq \delta
\end{gathered}
$$

- so, $Z=\sum_{i=1}^{n} S_{i}=O(\sqrt{n})$ with extremely high probability- the sum of n independent random signs is essentially never larger than $O(\sqrt{n})$

Hoeffding's lemma and Hoeffding's inequality

- Hoeffding's inequality: a powerful technique for bounding the probability that sums of bounded random variables are too large or too small
- perhaps the most important inequality in learning theory
- Let Z_{1}, \ldots, Z_{n} be independent bounded random variables with $Z_{i} \in[a, b]$ for all i, where $-\infty<a<b<\infty$. Then:

$$
\begin{gathered}
P\left(\frac{1}{n} \sum_{i=1}^{n}\left(Z_{i}-\mathbb{E}\left[Z_{i}\right]\right) \geq t\right) \leq \exp \left(-\frac{2 n t^{2}}{(b-a)^{2}}\right) \\
\text { and } \\
P\left(\frac{1}{n} \sum_{i=1}^{n}\left(Z_{i}-\mathbb{E}\left[Z_{i}\right]\right) \leq-t\right) \leq \exp \left(-\frac{2 n t^{2}}{(b-a)^{2}}\right) \\
\text { for all } t \geq 0
\end{gathered}
$$

- proof of Hoeffding's inequality using Chernoff bounds and Hoeffding's lemma:

- Hoeffding's lemma:

- Let Z be a bounded random variable with $Z \in[a, b]$. Then,

$$
\mathbb{E}[\exp (\lambda(Z-\mathbb{E}[Z]))] \leq\left(\frac{\lambda^{2}(b-a)^{2}}{8}\right) \quad \text { for all } \lambda \in \mathbb{R}
$$

- A proof of a slightly weaker version of this lemma with a factor of 2 instead of 8 using the random sign moment generating bound and Jensen's inequality
- Jensen's inequality states: if $f: \mathbb{R} \rightarrow \mathbb{R}$ is a convex function, then:

$$
f(\mathbb{E}[Z]) \leq \mathbb{E}[f(Z)]
$$

- to remember this inequality:
- think of $f(t)=t^{2}$
- note that if $\mathbb{E}[Z]=0$, then $f(\mathbb{E}[Z])=0$, while we generally have $\mathbb{E}\left[Z^{2}\right]>0$
- we will use a technique in probability theory known as symmetrization (this is a common technique in probability theory, machine learning, and statistics):
- Let Z^{\prime} be an independent copy of Z with the same distribution, so that $Z^{\prime} \in[a, b]$ and $\mathbb{E}\left[Z^{\prime}\right]=\mathbb{E}[Z]$, but Z and Z^{\prime} are independent. Then:

$$
\begin{aligned}
& \mathbb{E}_{Z}\left[\exp \left(\lambda\left(Z-\mathbb{E}_{Z}[Z]\right)\right)\right] \\
= & \mathbb{E}_{Z}\left[\exp \left(\lambda\left(Z-\mathbb{E}_{Z^{\prime}}\left[Z^{\prime}\right]\right)\right)\right] \\
\leq & \mathbb{E}_{Z} \text { and } \mathbb{E}_{Z^{\prime}} \text { indicate expectations w.r.t. } Z \text { and } Z^{\prime} \\
\leq & \mathbb{E}_{Z}\left[\mathbb{E}_{Z^{\prime}} \exp \left(\lambda\left(Z-Z^{\prime}\right)\right)\right]
\end{aligned} \quad \text { Jensen's inequality applied to } f(x)=e^{-x}
$$

- so, we have:

$$
\mathbb{E}[\exp (\lambda(Z-\mathbb{E}[Z]))] \leq \mathbb{E}\left[\exp \left(\lambda\left(Z-Z^{\prime}\right)\right)\right]
$$

- now, we note the following: the difference $Z-Z^{\prime}$ is symmetric about zero, so that if $S \in\{-1,1\}$ is a random sign variable, then $S\left(Z-Z^{\prime}\right)$ has exactly the same distribution as $Z-Z^{\prime}$

$$
\begin{aligned}
\mathbb{E}_{Z, Z^{\prime}}\left[\exp \left(\lambda\left(Z-Z^{\prime}\right)\right)\right] & =\mathbb{E}_{Z, Z^{\prime}, S}\left[\exp \left(\lambda S\left(Z-Z^{\prime}\right)\right)\right] \\
& =\mathbb{E}_{Z, Z^{\prime}}\left[\mathbb{E}_{S}\left[\exp \left(\lambda S\left(Z-Z^{\prime}\right)\right)\right] \mid Z, Z^{\prime}\right]
\end{aligned}
$$

- now, use inequality (3) from the notes (i.e., $\mathbb{E}\left[e^{\lambda S}\right] \leq \exp \left(\frac{\lambda^{2}}{2}\right) \forall \in \mathbb{R}$):

$$
\mathbb{E}_{S}\left[\exp \left(\lambda S\left(Z-Z^{\prime}\right)\right) \mid Z, Z^{\prime}\right] \leq \exp \left(\frac{\lambda^{2}\left(Z-Z^{\prime}\right)^{2}}{2}\right)
$$

- by assumption, we have $\left|Z-Z^{\prime}\right| \leq(b-a)$, so $\left(Z-Z^{\prime}\right) \leq(b-a)^{2}$, giving:

$$
\mathbb{E}_{Z, Z^{\prime}}\left[\exp \left(\lambda\left(Z-Z^{\prime}\right)\right)\right] \leq \exp \left(\frac{\lambda^{2}(b-a)^{2}}{2}\right)
$$

- this is the result, with a factor of 2 instead of 8
- now, use Hoeffding's lemma with the Chernoff bound to prove Hoeffding's inequality:

$$
\begin{array}{rlrl}
P\left(\frac{1}{n} \sum_{i=1}^{n}\left(Z_{i}-\mathbb{E}\left[Z_{i}\right]\right) \geq t\right) & =P\left(\sum_{i=1}^{n}\left(Z_{i}-\mathbb{E}\left[Z_{i}\right]\right) \geq n t\right) \\
& \leq \mathbb{E}\left[\exp \left(\lambda \sum_{i=1}^{n}\left(Z_{i}-\mathbb{E}\left[Z_{i}\right]\right)\right)\right] e^{-\lambda n t} & \text { Chernoff bound } \\
& \leq\left(\prod_{i=1}^{n} \mathbb{E}\left[e^{\lambda\left(Z_{i}-\mathbb{E}\left[Z_{i}\right]\right)}\right]\right) e^{-\lambda n t} & \\
& \leq\left(\prod_{i=1}^{n} e^{\frac{\lambda^{2}(b-a)^{2}}{8}}\right) e^{-\lambda n t} & \text { Hoeffding's lemma }
\end{array}
$$

- rewriting and minimizing over $\lambda \geq 0$:

$$
\begin{aligned}
P\left(\frac{1}{n} \sum_{i=1}^{n}\left(Z_{i}-\mathbb{E}\left[Z_{i}\right]\right) \geq t\right) & \leq \min _{\lambda \geq 0} \exp \left(\frac{n \lambda^{2}(b-a)^{2}}{8}-\lambda n t\right) \\
& \leq \exp \left(-\frac{2 n t^{2}}{(b-a)^{2}}\right)
\end{aligned}
$$

