
CS229 binary classification and general loss function notes
James Chuang

April 7, 2017

Contents
binary classification . 1
logistic regression . 2
general loss functions . 4
the representer theorem . 4
nonlinear features and kernels . 5
stochastic gradient descent for kernelized machine learning . 6
support vector machines . 7
gaussian/RBF kernel example . 7

My notes on John Duchi’s CS229 binary classification and general loss function supplemental notes.

binary classification

• binary classification
• target y can take on only two values
• represent by y ∈ {−1, +1}
• assume input features x ∈ Rn

• use standard approach to supervised learning:
1. pick a representation for the hypothesis class
2. pick a loss function to minimize
• in binary classification, often use hypothesis of the form:

hθ(x) = θT x

• then, classify based on the sign of θT x, i.e. sign(θT x)
• an example (x, y) is classified correctly if:

sign(hθ(x)) = y

• or equivalently, if:

yθT x > 0

• yθT x is called themargin for the example (x, y)
• often (not always), hθ(x) = xT θ is interpreted as a measure of the confidence with which the parameter vector θ
assigns a label for the point x
• xT θ very negative (positive), then we more strongly believe that the label y is negative (positive)

• having chosen a hypothesis class, now choose a loss function
• intuitively, want a loss function which:
• given training data

{
x(i), y(i)}m

i=1, the chosen θ makes the margin y(i)θT x(i) very large for each training
example

• fix a hypothetical example (x, y), and let:
• z = yxT θ denote the margin
• φ : R→ R be the loss function

• for a particular loss function, the empirical risk to minimize is then:

1

http://cs229.stanford.edu/materials.html

J(θ) = 1
m

m∑
i=1

φ
(

y(i)θT x(i)
)

• desired behavior:
• want y(i)θT x(i) positive for each training example i = 1, . . . , m
• should penalize θ for which y(i)θT x(i) < 0 frequently in the training data

• an intuitive choice for loss function:
• φ(z) small if z > 0 (margin is positive)
• φ(z) large if z < 0 (margin is negative)

• a natural choice is then zero-one loss:

φzo(z) =

{
1 if z ≤ 0
0 if z > 0

• with zero-one loss, the risk J(θ) is the average number of misclassifications that the parameter θ makes on the
training data
• negatives:
• zero-one loss is discontinuous, non-convex, NP-hard to minimize
• therefore, prefer losses which satisfy:{

φ(z)→ 0 as z →∞
φ(z)→∞ as z → −∞

• three loss functions commonly used in ML:
• logistic loss

φlogistic(z) = log
(
1 + e−z

)
• hinge (SVM) loss

φhinge(z) = [1− z]+
= max {1− z, 0}

• exponential loss

φexp(z) = e−z

• minimizing different loss functions leads to different ML algorithms:
• logistic loss→ logistic regression
• hinge loss→ support vector machines
• exponential loss→ boosting

logistic regression

• use binary labels y ∈ {−1, 1}
• use logistic loss:

φlogistic(yxT θ) = log
(
1 + exp

(
−yxT θ

))
• logistic regression corresponds to choosing θ to minimize the empirical risk:

J(θ) = 1
m

m∑
i=1

φlogistic

(
y(i)θT x(i)

)
= 1

m

m∑
i=1

log
(

1 + exp
(
−y(i)θT x(i)

))

2

• probabilistic interpretation:
• define sigmoid, aka logistic function:

g(z) = 1
1 + e−z

• the sigmoid function satisfies

g(z) + g(−z) = 1
1 + e−z

+ 1
1 + ez

= ez

1 + ez
+ 1

1 + ez
= 1

• therefore, the sigmoid function can be used to define a probability model for binary classification
• for y ∈ {−1, 1}, define the logistic model for classification:

p (Y = y | x; θ) = g
(
yxT θ

)
= 1

1 + e−yxT θ

• interpretation:
• margin yxT θ is very positive→ p(Y = y | x; θ) = g(yxT θ) ≈ 1
• margin yxT θ is very negative→ p(Y = y | x; θ) = g(yxT θ) ≈ 0

• redefine the hypothesis class as:

hθ(x) = g(θT x) = 1
1 + e−θT x

• get likelihood of the training data:

L(θ) =
m∏

i=1
p

(
Y = y(i) | x(i); θ

)
=

m∏
i=1

hθ

(
y(i)x(i)

)
l(θ) =

m∑
i=1

log hθ

(
y(i)x(i)

)
get log-likelihood

= −
m∑

i=1

(
1 + e−y(i)θT x(i)

)
= −mJ(θ) J(θ) is the logistic regression risk (see above)

• therefore, maximum likelihood in the logistic model is equivalent to minimizing the average logistic loss
• gradient descent methods

• to fit the logistic regression model, consider gradient-descent-based minimization
• the derivative of the logistic loss:

d

dz
φlogistic(z)

= φ′
logistic(z)

= 1
1 + e−z

· d

dz
e−z

= − e−z

1 + e−z

= − 1
1 + ez

= −g(−z)

• for a single training example (x, y) (applying chain rule), we have:

3

∂

∂θk
ϕlogistic(yxT θ)

= −g
(
−yxT θ

) ∂

∂θk

(
yxT θ

)
= −g

(
−yxT θ

)
yxk

• thus, a stochastic gradient procedure for minimizing J(θ) iteratively performs the following for iterations t = 1, 2, . . .,
where αt is a step size at time t:
1. Choose an example i ∈ {1, . . . , m} uniformly at random
2. Perform the gradient update

θ(t+1) = θ(t) − αt · ∇θφlogistic

(
y(i)x(i)T θ(t)

)
= θ(t) + αtg

(
−y(i)x(i)T θ(t)

)
y(i)x(i)

= θ(t) + αthθ(t)

(
−y(i)x(i)

)
y(i)x(i)

• intuition:
• if our current hypothesis hθ(t) assigns probability close to 1 for the incorrect label−y(i):
• try to reduce the loss by moving θ in the direction of y(i)x(i)

• conversely, if current hypothesis hθ(t) assigns probability close to 0 for the incorrect label−y(i):
• update essentially does nothing

general loss functions

• supervised learning:
1. choose a representation for the problem (i.e. a hypothesis class)
2. choose a loss function
3. minimize the loss

• consider a more general formulation for supervised learning
• input data x ∈ Rn

• targets y from a space Y
• e.g. in linear regression Y = R, for binary classification y ∈ Y = {−1, 1}
• for each of these problems:
• make predictions based on θT x for some vector θ
• construct a loss functionL : R× Y → R
• given a training set of pairs

{
x(i), y(i)}, choose θ by minimizing the empirical risk

J(θ) = 1
m

m∑
i=1
L

(
θT x(i), y(i)

)

the representer theorem

• consider an empirical risk with ℓ2-regularization, i.e. the regularized risk

Jλ(θ) = 1
m

m∑
i=1
L

(
θT x(i), y(i)

)
+ λ

2
∥θ∥2

2

• consider the structure of any θ that minimizes the risk
• assume that for each fixed target y ∈ Y , the lossL(z, y) is convex in z
• this is true for linear regression, binary/multiclass logistic regression, and many other losses we will consider

4

• under these assumptions, the solution (i.e. the θ that minimizes the risk) can always be written as a linear combina-
tion of the input variables x(i)

• this is the representer theorem:
• Suppose in the definition of the regularized risk that λ ≥ 0. Then there is a minimizer of the regularized risk
that can be written

θ =
m∑

i=1
αix

(i)

• where αi are real-valued weights
• an informal proof
• assume thatL(z, y) is differentiable w.r.t. z, and λ > 0

Jλ(θ) = 1
m

m∑
i=1
L

(
θT x(i), y(i)

)
+ λ

2
∥θ∥2

2 the regularized risk

∇Jλ(θ) = 1
m

m∑
i=1
∇θL

(
θT x(i), y(i)

)
+ λ∇θ

1
2
∥θ∥2

2

∇Jλ(θ) = 1
m

m∑
i=1
L′

(
θT x(i), y(i)

)
x(i) + λθ = 0⃗ ∇Jλ(θ) = 0 at the minimum

0⃗ = 1
m

m∑
i=1

wix
(i) + λθ letwi = L′

(
θT x(i), y(i)

)
θ = − 1

λm

m∑
i=1

wix
(i)

θ =
m∑

i=1
αix

(i) let αi = − wi

λm

nonlinear features and kernels

• the representer theoremmeans that the parameter vector θ can always bewritten as a linear combination of the data
{

x(i)}m

i=1
• this means we can always make predictions

θT x = xT θ =
m∑

i=1
αix

T x(i)

• i.e., in any learning algorithm, we can replace all appearances of θT x with
∑m

i=1 αix
(i)T x, and then minimize directly

over α ∈ Rm

• consider this idea in more generality:
• “original” input values = attributes
• quantities passed to the learning algorithm = features
• ϕ = the feature mapping from the attributes to the features
• to learn with features ϕ(x), simply replace x everywhere in the algorithm with ϕ(x)
• write the algorithm entirely in terms of inner products ⟨x, z⟩, and simply replace the inner products with
⟨ϕ(x), ϕ(z)⟩

• define the corresponding kernel to be

K(x, z) = ϕ(x)T ϕ(z)

• then, replace ⟨x, z⟩ withK(x, z)
• kernelizing the regularized risk

5

Jλ(θ) = 1
m

m∑
i=1
L

(
θT x(i), y(i)

)
+ λ

2
∥θ∥2

2 the regularized risk

Jλ(α) = 1
m

m∑
i=1
L

ϕ
(

x(i)
)T m∑

j=1
αjϕ

(
x(j)

)
, y(i)

 + λ

2

∥∥∥αiϕ
(

x(i)
)∥∥∥2

2
θ =

m∑
i=1

αiϕ
(

x(i)
)

= 1
m

m∑
i=1
L

 m∑
j=1

αjϕ
(

x(i)
)T

ϕ
(

x(j)
)

, y(i)

 + λ

2

m∑
i=1

m∑
j=1

αiαjϕ
(

x(i)
)T

ϕ
(

x(j)
)

= 1
m

m∑
i=1
L

 m∑
j=1

αjK
(

x(i), x(j)
)

, y(i)

 + λ

2
∑
i,j

αiαjK
(

x(i), x(j)
)

• i.e., we can write the entire loss function to be minimized in terms of the kernel matrix

K =
[
K

(
x(i), x(j)

)]m

i,j=1
∈ Rm×m

• we could computeK(x, z) by finding ϕ(x) and ϕ(z) and taking their inner product
• however, K(x, z) may be very inexpensive to calculate, even though ϕ(x) may be very expensive or
impossible to calculate
• by using an efficient way to calculateK(x, z), we can learn in the high dimensional feature space given
by ϕ, but without ever having to explicitly calculate or represent vectors ϕ(x) (this is the kernel trick)

• examples of kernels:
• Gaussian/Radial Basis Function (RBF) kernel:

K(x, z) = exp
(
− 1

2τ2 ∥x− z∥2
2

)
• min-kernel (applicable when x ∈ R)

K(x, z) = min{x, z}

stochastic gradient descent for kernelized machine learning

• letK ∈ Rm×m denote the kernel matrix
• for shorthand, define the vectors

K(i) =


K

(
x(i), x(1))

K
(
x(i), x(2))
...

K
(
x(i), x(m))


• then,

K =

 | | |
K(1) K(2) · · · K(m)

| | |


• so the regularized risk can be written as:

Jλ(α) = 1
m

m∑
i=1
L

(
K(i)T α, y(i)

)
+ λ

2
αT Kα

6

• consider taking a stochastic gradient of this risk:

Jλ(α) = 1
m

m∑
i=1
L

(
K(i)T α, y(i)

)
+ λ

2
αT Kα

∇αJλ(α) = 1
m

m∑
i=1
∇αL

(
K(i)T α, y(i)

)
+ λ∇α

[
1
2

αT Kα

]

= 1
m

m∑
i=1
L′

(
K(i)T α, y(i)

)
K(i) + λ

m∑
i=1

K(i)αi

• if we choose a random index i ∈ {1, . . . , m}, a stochastic gradient for Jλ(α) is then:

L′
(

K(i)T α, y(i)
)

K(i) + mλK(i)αi

• pseudocode for SGD for kernel supervised learning problems:
• input:
• loss functionL
• kernel matrixK =

[
K(1) · · ·K(m)]

• labels
{

y(i)}m

i=1
• sequence of positive stepsizes η1, η2, η3, . . .

• iterate for t = 1, 2, . . .
1. Choose index i ∈ {1, . . . , m} uniformly at random
2. Update

α← α− ηt

[
L′

(
K(i)T α, y(i)

)
K(i) + mλK(i)αi

]
• note: because the λK(i)αi term is multiplied bym to keep the gradient unbiased, it is important that λ > 0 not be too
large, as the algorithm can be unstable otherwise
• note: a common stepsize is ηt = 1√

t
, or a constant multiple thereof

support vector machines

• one approach to SVMs:
• use the margin-based loss function

L(z, y) = [1− yz]+ = max{0, 1− yz}

• the empirical regularized risk is then:

Jλ(α) = 1
m

m∑
i=1

[
1− y(i)K(i)T α

]
+

+ λ

2
αT Kα

gaussian/RBF kernel example

K(x, z) = exp
(
− 1

2τ2 ∥x− z∥2
2

)
• τ > 0 controls the bandwidth of the kernel

• for small τ ,K(x, z) ≈ 0 unless x ≈ z
• for large τ , the kernel functionK is much smoother

• the feature functionϕ for the RBF kernel is infinite dimensional (it is the Fourier transform of the Gaussian distribution with mean
zero and variance τ^2)

• to make a new prediction:

7

θT x

=
m∑

i=1
αix

T x(i) representer theorem

=
m∑

i=1
K

(
x(i), x

)
αi substitute kernel function

=
m∑

i=1
exp

(
− 1

2τ2 ∥x
(i) − x∥2

2

)
αi

• this represents something like a weighting depending on how close x is to each x(i)

• i.e., the contribution of weight αi is scaled by the similarity of x to x(i) as determined by the kernel function
• large τ → a very simple, close to linear classifier
• small τ → a variable, highly non-linear classifier

8

	binary classification
	logistic regression
	general loss functions
	the representer theorem
	nonlinear features and kernels
	stochastic gradient descent for kernelized machine learning
	support vector machines
	gaussian/RBF kernel example

