CS229 binary classification and general loss function notes

James Chuang

April 7, 2017

Contents

binary classification	1
logistic regression	2
general loss functions	4
the representer theorem	4
nonlinear features and kernels	5
stochastic gradient descent for kernelized machine learning	6
support vector machines	7
gaussian/RBF kernel example	7

My notes on John Duchi's CS229 binary classification and general loss function supplemental notes.

binary classification

- binary classification
 - target y can take on only two values
 - represent by $y \in \{-1, +1\}$
 - assume input features $x \in \mathbb{R}^n$
- use standard approach to supervised learning:
 - 1. pick a representation for the hypothesis class
 - 2. pick a loss function to minimize
 - in binary classification, often use hypothesis of the form:

$$h_{\theta}(x) = \theta^T x$$

- then, classify based on the sign of $\theta^T x$, i.e. sign $(\theta^T x)$
 - an example (x, y) is classified correctly if:

$$\operatorname{sign}(h_{\theta}(x)) = y$$

• or equivalently, if:

$$y\theta^T x > 0$$

- $y\theta^T x$ is called the margin for the example (x, y)
- often (not always), $h_{\theta}(x) = x^T \theta$ is interpreted as a measure of the confidence with which the parameter vector θ assigns a label for the point x
- $x^T \theta$ very negative (positive), then we more strongly believe that the label y is negative (positive)
- having chosen a hypothesis class, now choose a loss function

 - intuitively, want a loss function which: given training data $\{x^{(i)}, y^{(i)}\}_{i=1}^{m}$, the chosen θ makes the margin $y^{(i)}\theta^{T}x^{(i)}$ very large for each training example
 - fix a hypothetical example (x, y), and let:
 - $z = y x^T \theta$ denote the margin
 - $\varphi:\mathbb{R}\to\mathbb{R}$ be the loss function
 - for a particular loss function, the empirical risk to minimize is then:

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \varphi\left(y^{(i)} \theta^T x^{(i)}\right)$$

- desired behavior:
 - want $y^{(i)} \theta^T x^{(i)}$ positive for each training example $i=1,\ldots,m$
 - should penalize θ for which $y^{(i)}\theta^T x^{(i)} < 0$ frequently in the training data
- an intuitive choice for loss function:
 - $\varphi(z)$ small if z > 0 (margin is positive)
 - $\varphi(z)$ large if z < 0 (margin is negative)
- a natural choice is then zero-one loss:

$$\varphi_{\rm zo}(z) = \begin{cases} 1 & \text{if } z \leq 0 \\ 0 & \text{if } z > 0 \end{cases}$$

- with zero-one loss, the risk $J(\theta)$ is the average number of misclassifications that the parameter θ makes on the training data
- negatives:
 - zero-one loss is discontinuous, non-convex, NP-hard to minimize
 - therefore, prefer losses which satisfy:

$$\begin{cases} \varphi(z) \to 0 & \text{ as } z \to \infty \\ \varphi(z) \to \infty & \text{ as } z \to -\infty \end{cases}$$

- three loss functions commonly used in ML:
 - logistic loss

$$\varphi_{\text{logistic}}(z) = \log\left(1 + e^{-z}\right)$$

• hinge (SVM) loss

$$\begin{split} \varphi_{\text{hinge}}(z) &= [1-z]_+ \\ &= \max\left\{1-z,0\right\} \end{split}$$

exponential loss

$$\varphi_{\exp}(z) = e^{-z}$$

- minimizing different loss functions leads to different ML algorithms:
 - logistic loss \rightarrow logistic regression
 - hinge loss \rightarrow support vector machines
 - exponential loss \rightarrow boosting

logistic regression

- use binary labels $y \in \{-1, 1\}$
- use logistic loss:

$$\varphi_{\text{logistic}}(yx^T heta) = \log\left(1 + \exp\left(-yx^T heta
ight)
ight)$$

• logistic regression corresponds to choosing θ to minimize the empirical risk:

$$\begin{split} J(\theta) &= \frac{1}{m} \sum_{i=1}^{m} \varphi_{\text{logistic}} \left(y^{(i)} \theta^T x^{(i)} \right) \\ &= \frac{1}{m} \sum_{i=1}^{m} \log \left(1 + \exp \left(-y^{(i)} \theta^T x^{(i)} \right) \right) \end{split}$$

- probabilistic interpretation:
 - define sigmoid, aka logistic function:

$$g(z) = \frac{1}{1+e^{-z}}$$

• the sigmoid function satisfies

$$g(z) + g(-z) = \frac{1}{1 + e^{-z}} + \frac{1}{1 + e^{z}} = \frac{e^{z}}{1 + e^{z}} + \frac{1}{1 + e^{z}} = 1$$

- therefore, the sigmoid function can be used to define a probability model for binary classification
- for $y \in \{-1, 1\}$, define the **logistic model** for classification:

$$p(Y = y \mid x; \theta) = g(yx^{T}\theta) = \frac{1}{1 + e^{-yx^{T}\theta}}$$

- interpretation:
 - margin $yx^T\theta$ is very positive $\rightarrow p(Y = y \mid x; \theta) = g(yx^T\theta) \approx 1$
 - margin $yx^T\theta$ is very negative $\rightarrow p(Y = y \mid x; \theta) = g(yx^T\theta) \approx 0$
- redefine the hypothesis class as:

$$h_{\theta}(x) = g(\theta^T x) = \frac{1}{1 + e^{-\theta^T x}}$$

• get likelihood of the training data:

$$\begin{split} L(\theta) &= \prod_{i=1}^{m} p\left(Y = y^{(i)} \mid x^{(i)}; \theta\right) \\ &= \prod_{i=1}^{m} h_{\theta}\left(y^{(i)}x^{(i)}\right) \\ l(\theta) &= \sum_{i=1}^{m} \log h_{\theta}\left(y^{(i)}x^{(i)}\right) & \text{get log-likelihood} \\ &= -\sum_{i=1}^{m} \left(1 + e^{-y^{(i)}\theta^{T}x^{(i)}}\right) \\ &= -mJ(\theta) & J(\theta) \text{ is the logist} \end{split}$$

 $J(\boldsymbol{\theta})$ is the logistic regression risk (see above)

- therefore, maximum likelihood in the logistic model is equivalent to minimizing the average logistic loss
- gradient descent methods
 - to fit the logistic regression model, consider gradient-descent-based minimization
 - the derivative of the logistic loss:

$$\begin{split} & \frac{d}{dz} \varphi_{\text{logistic}}(z) \\ &= \varphi'_{\text{logistic}}(z) \\ &= \frac{1}{1 + e^{-z}} \cdot \frac{d}{dz} e^{-z} \\ &= -\frac{e^{-z}}{1 + e^{-z}} \\ &= -\frac{1}{1 + e^{z}} \\ &= -g(-z) \end{split}$$

• for a single training example (x, y) (applying chain rule), we have:

$$\frac{\partial}{\partial \theta_k} \phi_{\text{logistic}}(yx^T \theta)$$
$$= -g \left(-yx^T \theta\right) \frac{\partial}{\partial \theta_k} \left(yx^T \theta\right)$$
$$= -g \left(-yx^T \theta\right) yx_k$$

- thus, a stochastic gradient procedure for minimizing $J(\theta)$ iteratively performs the following for iterations t = 1, 2, ...,where α_t is a step size at time t:
 - 1. Choose an example $i \in \{1, \ldots, m\}$ uniformly at random
 - 2. Perform the gradient update

$$\begin{split} \theta^{(t+1)} &= \theta^{(t)} - \alpha_t \cdot \nabla_\theta \varphi_{\text{logistic}} \left(y^{(i)} x^{(i)T} \theta^{(t)} \right) \\ &= \theta^{(t)} + \alpha_t g \left(-y^{(i)} x^{(i)T} \theta^{(t)} \right) y^{(i)} x^{(i)} \\ &= \theta^{(t)} + \alpha_t h_{\theta^{(t)}} \left(-y^{(i)} x^{(i)} \right) y^{(i)} x^{(i)} \end{split}$$

- intuition:
 - if our current hypothesis $h_{\theta^{(t)}}$ assigns probability close to 1 for the *incorrect* label $-y^{(i)}$:
 - try to reduce the loss by moving θ in the direction of $y^{(i)}x^{(i)}$
 - conversely, if current hypothesis $h_{\theta^{(t)}}$ assigns probability close to 0 for the incorrect label $-y^{(i)}$:
 - update essentially does nothing

general loss functions

- supervised learning:
 - 1. choose a representation for the problem (i.e. a hypothesis class)
 - 2. choose a loss function
 - 3. minimize the loss
- consider a more general formulation for supervised learning
 - input data $x \in \mathbb{R}^n$
 - targets y from a space \mathcal{Y}
 - e.g. in linear regression $\mathcal{Y} = \mathbb{R}$, for binary classification $y \in \mathcal{Y} = \{-1, 1\}$
 - for each of these problems:
 - make predictions based on $\theta^T x$ for some vector θ
 - construct a loss function $\mathcal{L}:\mathbb{R}\times\mathcal{Y}\rightarrow\mathbb{R}$
 - given a training set of pairs $\{x^{(i)}, y^{(i)}\}$, choose θ by minimizing the empirical risk

$$J(\boldsymbol{\theta}) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}\left(\boldsymbol{\theta}^{T} \boldsymbol{x}^{(i)}, \boldsymbol{y}^{(i)}\right)$$

the representer theorem

• consider an empirical risk with ℓ_2 -regularization, i.e. the regularized risk

$$J_{\lambda}(\theta) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}\left(\theta^{T} x^{(i)}, y^{(i)}\right) + \frac{\lambda}{2} \|\theta\|_{2}^{2}$$

- consider the structure of any θ that minimizes the risk
 - assume that for each fixed target $y \in \mathcal{Y}$, the loss $\mathcal{L}(z, y)$ is convex in z
 - this is true for linear regression, binary/multiclass logistic regression, and many other losses we will consider

- under these assumptions, the solution (i.e. the θ that minimizes the risk) can always be written as a *linear combina*tion of the input variables $x^{(i)}$
- this is the representer theorem:
 - Suppose in the definition of the regularized risk that $\lambda \ge 0$. Then there is a minimizer of the regularized risk that can be written

$$\theta = \sum_{i=1}^{m} \alpha_i x^{(i)}$$

- where α_i are real-valued weights
- an informal proof
 - assume that $\mathcal{L}(z, y)$ is differentiable w.r.t. z, and $\lambda > 0$

$$\begin{split} J_{\lambda}(\theta) &= \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}\left(\theta^{T} x^{(i)}, y^{(i)}\right) + \frac{\lambda}{2} \|\theta\|_{2}^{2} & \text{the regularized risk} \\ \nabla J_{\lambda}(\theta) &= \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} \mathcal{L}\left(\theta^{T} x^{(i)}, y^{(i)}\right) + \lambda \nabla_{\theta} \frac{1}{2} \|\theta\|_{2}^{2} \\ \nabla J_{\lambda}(\theta) &= \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}'\left(\theta^{T} x^{(i)}, y^{(i)}\right) x^{(i)} + \lambda \theta = \vec{0} & \nabla J_{\lambda}(\theta) = 0 \text{ at the minimum} \\ \vec{0} &= \frac{1}{m} \sum_{i=1}^{m} w_{i} x^{(i)} + \lambda \theta & \text{let } w_{i} = \mathcal{L}'\left(\theta^{T} x^{(i)}, y^{(i)}\right) \\ \theta &= -\frac{1}{\lambda m} \sum_{i=1}^{m} w_{i} x^{(i)} & \text{let } \alpha_{i} = -\frac{w_{i}}{\lambda m} \end{split}$$

nonlinear features and kernels

the representer theorem means that the parameter vector θ can always be written as a linear combination of the data {x⁽ⁱ⁾}_{i=1}^m
 this means we can always make predictions

$$\theta^T x = x^T \theta = \sum_{i=1}^m \alpha_i x^T x^{(i)}$$

- i.e., in **any** learning algorithm, we can replace all appearances of $\theta^T x$ with $\sum_{i=1}^m \alpha_i x^{(i)T} x$, and then minimize directly over $\alpha \in \mathbb{R}^m$
 - consider this idea in more generality:
 - "original" input values = attributes
 - quantities passed to the learning algorithm = features
 - ϕ = the **feature mapping** from the attributes to the features
 - to learn with features $\phi(x)$, simply replace x everywhere in the algorithm with $\phi(x)$
 - write the algorithm entirely in terms of inner products $\langle x, z \rangle$, and simply replace the inner products with $\langle \phi(x), \phi(z) \rangle$
 - define the corresponding kernel to be

$$K(x,z) = \phi(x)^T \phi(z)$$

- then, replace $\langle x, z \rangle$ with K(x, z)
- kernelizing the regularized risk

$$\begin{split} J_{\lambda}(\theta) &= \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}\left(\theta^{T} x^{(i)}, y^{(i)}\right) + \frac{\lambda}{2} \left\|\theta\right\|_{2}^{2} & \text{the regularized risk} \\ J_{\lambda}(\alpha) &= \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}\left(\phi\left(x^{(i)}\right)^{T} \sum_{j=1}^{m} \alpha_{j} \phi\left(x^{(j)}\right), y^{(i)}\right) + \frac{\lambda}{2} \left\|\alpha_{i} \phi\left(x^{(i)}\right)\right\|_{2}^{2} & \theta = \sum_{i=1}^{m} \alpha_{i} \phi\left(x^{(i)}\right) \\ &= \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}\left(\sum_{j=1}^{m} \alpha_{j} \phi\left(x^{(i)}\right)^{T} \phi\left(x^{(j)}\right), y^{(i)}\right) + \frac{\lambda}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_{i} \alpha_{j} \phi\left(x^{(i)}\right)^{T} \phi\left(x^{(j)}\right) \\ &= \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}\left(\sum_{j=1}^{m} \alpha_{j} K\left(x^{(i)}, x^{(j)}\right), y^{(i)}\right) + \frac{\lambda}{2} \sum_{i,j} \alpha_{i} \alpha_{j} K\left(x^{(i)}, x^{(j)}\right) \end{split}$$

• i.e., we can write the entire loss function to be minimized in terms of the kernel matrix

$$K = \left[K\left(x^{(i)}, x^{(j)}\right) \right]_{i,j=1}^{m} \in \mathbb{R}^{m \times m}$$

- we could compute K(x,z) by finding $\phi(x)$ and $\phi(z)$ and taking their inner product
 - however, K(x,z) may be very inexpensive to calculate, even though $\phi(x)$ may be very expensive or impossible to calculate
 - by using an efficient way to calculate K(x, z), we can learn in the high dimensional feature space given by ϕ , but without ever having to explicitly calculate or represent vectors $\phi(x)$ (this is the **kernel trick**)
- examples of kernels:
 - Gaussian/Radial Basis Function (RBF) kernel:

$$K(x,z) = \exp\left(-\frac{1}{2\tau^2} \|x - z\|_2^2\right)$$

• min-kernel (applicable when $x \in \mathbb{R}$)

$$K(x,z) = \min\{x,z\}$$

stochastic gradient descent for kernelized machine learning

- let $K \in \mathbb{R}^{m \times m}$ denote the kernel matrix
- for shorthand, define the vectors

$$K^{(i)} = \begin{bmatrix} K \left(x^{(i)}, x^{(1)} \right) \\ K \left(x^{(i)}, x^{(2)} \right) \\ \vdots \\ K \left(x^{(i)}, x^{(m)} \right) \end{bmatrix}$$

• then,

$$K = \begin{bmatrix} | & | & | \\ K^{(1)} & K^{(2)} & \cdots & K^{(m)} \\ | & | & | \end{bmatrix}$$

• so the regularized risk can be written as:

$$J_{\lambda}(\alpha) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}\left(K^{(i)T}\alpha, y^{(i)}\right) + \frac{\lambda}{2} \alpha^{T} K \alpha$$

• consider taking a stochastic gradient of this risk:

$$J_{\lambda}(\alpha) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}\left(K^{(i)T}\alpha, y^{(i)}\right) + \frac{\lambda}{2} \alpha^{T} K \alpha$$
$$\nabla_{\alpha} J_{\lambda}(\alpha) = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\alpha} \mathcal{L}\left(K^{(i)T}\alpha, y^{(i)}\right) + \lambda \nabla_{\alpha} \left[\frac{1}{2} \alpha^{T} K \alpha\right]$$
$$= \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}'\left(K^{(i)T}\alpha, y^{(i)}\right) K^{(i)} + \lambda \sum_{i=1}^{m} K^{(i)} \alpha_{i}$$

• if we choose a random index $i \in \{1, \dots, m\}$, a stochastic gradient for $J_{\lambda}(\alpha)$ is then:

$$\mathcal{L}'\left(K^{(i)T}\alpha, y^{(i)}\right)K^{(i)} + m\lambda K^{(i)}\alpha_i$$

- pseudocode for SGD for kernel supervised learning problems:
 - input:
 - loss function \mathcal{L}

 - kernel matrix $K = [K^{(1)} \cdots K^{(m)}]$ labels $\{y^{(i)}\}_{i=1}^{m}$ sequence of positive stepsizes $\eta_1, \eta_2, \eta_3, \dots$
 - iterate for $t = 1, 2, \ldots$
 - 1. Choose index $i \in \{1, \ldots, m\}$ uniformly at random
 - 2. Update

$$\alpha \leftarrow \alpha - \eta_t \left[\mathcal{L}' \left(K^{(i)T} \alpha, y^{(i)} \right) K^{(i)} + m\lambda K^{(i)} \alpha_i \right]$$

- note: because the $\lambda K^{(i)} \alpha_i$ term is multiplied by m to keep the gradient unbiased, it is important that $\lambda > 0$ not be too large, as the algorithm can be unstable otherwise
- note: a common stepsize is $\eta_t = \frac{1}{\sqrt{t}}$, or a constant multiple thereof

support vector machines

- one approach to SVMs:
 - use the margin-based loss function

$$\mathcal{L}(z, y) = [1 - yz]_{+} = \max\{0, 1 - yz\}$$

• the empirical regularized risk is then:

$$J_{\lambda}(\alpha) = \frac{1}{m} \sum_{i=1}^{m} \left[1 - y^{(i)} K^{(i)T} \alpha \right]_{+} + \frac{\lambda}{2} \alpha^{T} K \alpha$$

gaussian/RBF kernel example

$$K(x,z) = \exp\left(-\frac{1}{2\tau^2} \|x - z\|_2^2\right)$$

- $\tau > 0$ controls the **bandwidth** of the kernel
 - for small τ , $K(x, z) \approx 0$ unless $x \approx z$
 - for large τ , the kernel function K is much smoother
- the feature function ϕ for the RBF kernel is infinite dimensional (it is the Fourier transform of the Gaussian distribution with mean zero and variance τ^2
- to make a new prediction:

$$\theta^T x$$

$$= \sum_{i=1}^m \alpha_i x^T x^{(i)}$$

$$= \sum_{i=1}^m K\left(x^{(i)}, x\right) \alpha_i$$

$$= \sum_{i=1}^m \exp\left(-\frac{1}{2\tau^2} \|x^{(i)} - x\|_2^2\right) \alpha_i$$

representer theorem

substitute kernel function

- this represents something like a weighting depending on how close x is to each x⁽ⁱ⁾
 i.e., the contribution of weight α_i is scaled by the similarity of x to x⁽ⁱ⁾ as determined by the kernel function
- large $\tau \rightarrow$ a very simple, close to linear classifier
- small $\tau \rightarrow$ a variable, highly non-linear classifier