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My notes on John Duchi’s CS229 binary classification and general loss function supplemental notes.

binary classification

e binary classification
e target y can take on only two values
e representbyy € {—1,+1}
e assume input features x € R™
e use standard approach to supervised learning:
1. pick a representation for the hypothesis class
2. pick a loss function to minimize
e in binary classification, often use hypothesis of the form:

ho(z) = 0T

e then, classify based on the sign of 67z, i.e. sign(67 z)
e anexample (x, y) is classified correctly if:

sign(hg(z)) =y

e or equivalently, if:

y0lz >0

e yOT 'z is called the margin for the example (z, )
e often (not always), hg(x) =2T0is interpreted as a measure of the confidence with which the parameter vector
assigns a label for the point x
o 279 very negative (positive), then we more strongly believe that the label v is negative (positive)
e having chosen a hypothesis class, now choose a loss function
e intuitively, want a loss function which:
e given training data {x(i), y(i) }:11 the chosen 6 makes the margin y(i)OTm(i) very large for each training
example
e fix a hypothetical example (x, y), and let:
o 2 = yxT 0 denote the margin
e ¢ : R — R be the loss function
e for a particular loss function, the empirical risk to minimize is then:
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m
J(0) = Z © <y(i)9Tx(i))
i=1
e desired behavior:

e want y(i)QT:ﬂ(i) positive for each training examplet = 1,...,m

e should penalize @ for which y(i)GTx(i) < 0 frequently in the training data
e an intuitive choice for loss function:

e ©(z) smallif z > 0 (margin is positive)

e (2) largeif z < 0 (margin is negative)
e anatural choice is then zero-one loss:

1 ifz2<0
9020(2):{

0 ifz>0

e with zero-one loss, the risk J (9) is the average number of misclassifications that the parameter 6 makes on the
training data
e negatives:
e zero-one loss is discontinuous, non-convex, NP-hard to minimize
e therefore, prefer losses which satisfy:

w(z) >0 asz— o0
o(z) > 00 asz — —o0

e three loss functions commonly used in ML:
e |ogistic loss

@Iogistic(z) = IOg (1 —+ e—z)
e hinge (SVM) loss

Pringe(2) = [1 — 2]+
= max {1 — 2,0}
e exponential loss

z

Pop(2) =€~
e minimizing different loss functions leads to different ML algorithms:
e |ogistic loss — logistic regression
e hinge loss — support vector machines
e exponential loss — boosting

logistic regression

e use binary labels y € {—1,1}
e use logistic loss:

L)Dlogistic(yxTe) = log (1 + exp (_ymT0>>
e |ogistic regression corresponds to choosing 6 to minimize the empirical risk:

J(0)

1 «— , ;
— Z Plogistic (y(Z)HTm(T))
m i=1

;i log (1 + exp (—y(i)eTx(i)))



e probabilistic interpretation:
e define sigmoid, aka logistic function:

e the sigmoid function satisfies

_ 1 1 e 1
Cl4e 2 + 14+er 1+4e? + 1+ e?
e therefore, the sigmoid function can be used to define a probability model for binary classification
e fory € {—1, 1}, define the logistic model for classification:

9(2) +9(=2)

1

— .0) — Tp) — S
PV =ylw6) =g (ye'0) = =
e interpretation:

e margin yx T @ is very positive — p(Y =y | z;0) = g(yz76) ~ 1
e margin yx T 0 is very negative — p(Y =y | 2;0) = g(yxT0) ~ 0
e redefine the hypothesis class as:

1
ho(z) = g(072) = ————
(o) = 9007 0) = 1
e get likelihood of the training data:
L) =[]» (Y =y @ |2 9)
i=1
m
=1 he (y(i)x(i))
i=1
1(0) = Zlog he (y(i)m(i)) get log-likelihood
i=1
i=1
=—mJ(0) J(0) is the logistic regression risk (see above)

e therefore, maximum likelihood in the logistic model is equivalent to minimizing the average logistic loss
e gradient descent methods

e to fit the logistic regression model, consider gradient-descent-based minimization

o the derivative of the logistic loss:

%@Iogistic(z)
= @(ogistic(z)
1 d _,
l4+e = @e

—z

e

_1+e*2
1

1 + e
—g(—=2)

e for a single training example (x, y) (applying chain rule), we have:




0
% ¢Iogistic (yxTe)
0

=—g (fy:va)) Tk (yxTH)

=—g (—yz"0) yas,

e thus, a stochastic gradient procedure for minimizing .J (6) iteratively performs the following for iterations t = 1,2, ...,
where q is a step size at time ¢:
1. Choose an example i € {1, ..., m} uniformly at random
2. Perform the gradient update

00+ = 90 — 0y - Voragaic (y(i)m(i)Tg(t))
— 00 4 aug <_y(i)x(i)Tg(t)> y @z @
— 00 4 a,hye (_yu)x(i)) y @@

e intuition:
e if our current hypothesis hy+) assigns probability close to 1 for the incorrect label —y(i):
e try to reduce the loss by moving 6 in the direction of y(i)x(i)
e conversely, if current hypothesis hg(:) assigns probability close to 0 for the incorrect label —y(i):
e update essentially does nothing

general loss functions

e supervised learning:
1. choose a representation for the problem (i.e. a hypothesis class)
2. choose a loss function
3. minimize the loss
e consider a more general formulation for supervised learning
e inputdatax € R"
e targets y from a space )/
e eg.inlinear regression ) = R, for binary classificationy € ) = {—1,1}
e for each of these problems:
o make predictions based on 87 for some vector @
e construct a loss function £ : R x ) — R
® given a training set of pairs {x(i), y(i) } choose 6 by minimizing the empirical risk

J(6) = % i £(67a,y9)
=1

the representer theorem

e consider an empirical risk with £5-regularization, i.e. the regularized risk

1 & N A
I (0) = — LI(GTx(Z) (z)) Zlle 2
AB) =37 )+ 5163
i=1
e consider the structure of any # that minimizes the risk
e assume that for each fixed target y € Y, the loss L(z, y) is convex in z
e this is true for linear regression, binary/multiclass logistic regression, and many other losses we will consider



e under these assumptions, the solution (i.e. the 6 that minimizes the risk) can always be written as a linear combina-
tion of the input variables z®
e this is the representer theorem:
e Suppose in the definition of the regularized risk that A\ > 0. Then there is a minimizer of the regularized risk
that can be written

e where «; are real-valued weights
e an informal proof
e assume that £(z, y) is differentiable w.rt. z,and A > 0

1 « D o@) A
Jr(0) = p. ZC (GTx(l),y(l)> + 5“6‘”% the regularized risk
i=1

1« Y G 1
VIA0) = — > Vol (072, y) + AV 0113
i=1

m

1 L . .
VJ\0) = - Z L (GTx(’), y(l)> @ +A0 =0 V.J\() = 0at the minimum
i=1

o1 . NG
O=—> wa®+ M letw; = L' <9T @ (1,))
m;wx + et w "y

gz_iiwlmm
)\mizl
0= i @ let 7’:*wi

nonlinear features and kernels

e the representer theorem means that the parameter vector  can always be written as a linear combination of the data {x(i) }:il
e this means we can always make predictions

m
00 =276 = Z aizTa:(i)
i=1

® i.e, inany learning algorithm, we can replace all appearances of 67 z with ZZZI aix(i)Tx, and then minimize directly

overa € R™
e consider this idea in more generality:
e “original” input values = attributes
® quantities passed to the learning algorithm = features
e (¢ = the feature mapping from the attributes to the features
e to learn with features ¢ (), simply replace & everywhere in the algorithm with ¢(x)
e write the algorithm entirely in terms of inner products (z, z), and simply replace the inner products with

(¢(z), 9(2))

define the corresponding kernel to be

K(z,2) = ¢(2)" ¢(2)

then, replace (z, z) with K (x, z)
kernelizing the regularized risk



m

IA(0) = % L (9T$(1)7 y(i)) + % ||9||3 the regularized risk
i—1
H= (¢ ) e ()| 3 () P

m m m m

% ZE Zaj¢ (x(i))T ¢ (ﬂf(j)) D]+ % Z Zaiaqu (Jr(i)>T b (x(j))
=1 \j=1

i=1 j=1

m m

= %Z[/ jz:;ajK (aj‘(l)’x(ﬂ)) ,y(l) +§iz,j:aiajK (JI(Z),Z‘(]))

=1

e i.e., we can write the entire loss function to be minimized in terms of the kernel matrix

K = [K (x@%x(j))}m e Rmxm
i,j=1
e we could compute K (x, z) by finding ¢(z) and ¢(z) and taking their inner product
e however, K (z, z) may be very inexpensive to calculate, even though ¢(x) may be very expensive or
impossible to calculate
e by using an efficient way to calculate K (x, z), we can learn in the high dimensional feature space given
by ¢, but without ever having to explicitly calculate or represent vectors gb(x) (this is the kernel trick)
e examples of kernels:
e Gaussian/Radial Basis Function (RBF) kernel:

1
K(2,2) = exp (~ 5l — =13)
e min-kernel (applicable when x € R)

K(x,z) = min{x, z}

stochastic gradient descent for kernelized machine learning

o let K € R™*™ denote the kernel matrix
e for shorthand, define the vectors

K (2@ M
K (2 2(2)
go— | Kl o )
K (m(i)’ x(m))
e then,
| | |
K= |KO g ... Kgim
| | |
e so the regularized risk can be written as:
1 & :
M) = =3 £ (K0Ta,y ) + ZaTK
(@) m; a,yV) + ZaKa



e consider taking a stochastic gradient of this risk:

Ja(a) = %ig (K(i)Tavy(i)> I %QTKQ
1=1

1 & ; : 1
_ = (i)T (1) LT
Vada(a) = m;,l Vol (K a,y ) + AV, [204 Ka]
1 — , , . UL
-3 (K(Z)Ta,y(l)) KD 423 KOq
m 4 ;
i=1 =1
e if we choose arandomindex i € {1,...,m}, a stochastic gradient for .J) () is then:

Yol (K(i)Ta,y(i)> KO + m KW,

e pseudocode for SGD for kernel supervised learning problems:
e input:
e loss function £
e kernel matrix K = [K(l) e K(m)}
: m
labels {y®} "
e sequence of positive stepsizes 1)1, 72,73, - . .
e jteratefort =1,2,...
1. Chooseindexi € {1,...,m} uniformly at random
2. Update

a4 a—n [C’ (K(i)Toz7 y(i)> KO 4+ m KW,

e note: because the )\K(i)ai term is multiplied by m to keep the gradient unbiased, it is important that A > 0 not be too
large, as the algorithm can be unstable otherwise

e note: a common stepsize is 1)y = % or a constant multiple thereof

support vector machines

e one approach to SVMs:
e use the margin-based loss function

E(Zay) = [1 - y2]+ = maX{07 1- yZ}
e the empirical regularized risk is then:

Ja(a) = zm: [1 ,y(z‘)K(z‘)TaL + gaTKa

i=1

gaussian/RBF kernel example

1
K(w.2) = exp (= hzllo =513 )

e 7 > () controls the bandwidth of the kernel
o forsmall 7, K (z,2) ~ Ounless x =~ z
e for large T, the kernel function K is much smoother
e the feature function ¢ for the RBF kernel is infinite dimensional (it is the Fourier transform of the Gaussian distribution with mean
zero and variance 7/2)
e to make a new prediction:



m
= E a;zTz® representer theorem

m
= Z K (z(i), z) (e substitute kernel function

m 1 .
=D _oxp (—an“ - xu%) @

e this represents something like a weighting depending on how close x is to each z®

® i.e., the contribution of weight «; is scaled by the similarity of x to z() as determined by the kernel function
e large 7 — a very simple, close to linear classifier
e small 7 — a variable, highly non-linear classifier
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