
CS229 boosting notes
James Chuang

May 2, 2017

Contents
1. Boosting . 1

My notes on John Duchi’s CS229 supplemental notes on boosting.

1. Boosting

• so far, have seen how to solve classification (and other) problems when we have a data representation already chosen

• in boosting, feature representations are automatically chosen

• the rough idea:
• take a weak learning algorithm (a classifier that is slightly better than random)
• transform it into a strong classifier, which does much better than random

• intuition:
• consider a digit recognition problem distinguishing 0 from 1 from images
• a weak learner might take the middle pixel of the image:
• if it is colored, call the image a 1

• if it is blank, call the image a 0
• boosting procedures take a collection of weak classifiers, and reweight their contributions to form a classifier with
much better accuracy than any individual classifier

• problem formulation:

• one interpretation of boosting is as a coordinate descent method in an infinite dimensional space
• assume:
• raw input samples x ∈ Rn with labels y ∈ {−1, 1}
• an infinite collection of feature functions ϕj : Rn → {−1, 1}
• an infinite vector θ =

[
θ1 θ2 · · ·

]T with a finite number of non-zero entries
• hypothesis:

hθ(x) = sign

 ∞∑
j=1

θjϕj(x)

• define:

θT ϕ(x) =
∞∑

i=1
θjϕj(x)

• in boosting, the features ϕj are called weak hypotheses
• given a training set

(
x(1), y(1)) , . . . ,

(
x(m), y(m)):

• we call a vector p =
(
p(1), . . . , p(m)) a distribution on the examples if p(i) ≥ 0 ∀ i and

m∑
i=1

p(i) = 1

1

http://cs229.stanford.edu/materials.html

• we say that there is a weak learner with margin γ > 0 if for any distribution p on them training examples there exists
one weak hypothesis ϕj such that

m∑
i=1

p(i)1
{

y(i) ̸= ϕj

(
x(i)

)}
≤ 1

2
− γ

• i.e., we assume that there is some classifier that does slightly better than random guessing on the dataset
• the existence of a weak learning algorithm is an assumption
• however, we can transform any weak learning algorithm into one with perfect accuracy

• in more generality, we assumewe have access to aweak learner- an algorithm that takes as input a distribution (weights)
p on the training examples and returns a classifier doing slightly better than random
• given access to a weak learning algorithm, boosting can return a classifier with perfect accuracy on the training data
(we ignore generalization for now)

1.1 the boosting algorithm

• roughly, boosting begins by assigning each training example in the dataset equal weight
• it then receives a weak hypothesis that does well according to the current weights on training examples, and incorporates it into
its current classification model

• it then reweights the trainng examples so that examples on which it makes mistakes receive higher weight, while examples with
no mistakes receive lower weight
• this forces the weak learning algorithm to focus on a classifier doing well on examples poorly classified by the weak
hypothesis

• repeated reweighting of the training data coupled with a weak learner doing well on examples for which the classifier currently
does poorly yields classifiers with good performance

• specifically, the boosting algorithm performs coordinate descent on the exponential loss for classification problems
• the objective:

J(θ) = 1
m

m∑
i=1

exp
(
−y(i)θT ϕ

(
x(i)

))
• coordinate descent algorithm:

1. choose a coordinate j ∈ N
2. update θj : θj ← arg minθj

J(θ)
• leave θk unchanged for all k ̸= j

• iterate until convergence
• derivation of the coordinate update for coordinate k:

J(θ) = 1
m

m∑
i=1

exp
(
−y(i)θT ϕ

(
x(i)

))
the objective function

J(θ) = 1
m

m∑
i=1

exp

−y(i)
∑
j ̸=k

θjϕ
(

x(i)
) exp

(
−y(i)θkϕ

(
x(i)

))
property of exp

J(θ) = 1
m

m∑
i=1

w(i) exp
(
−y(i)θkϕ

(
x(i)

))
definew(i) = exp

−y(i)
∑
j ̸=k

θjϕ
(

x(i)
)

to optimize coordinate k :

α∗ = arg min
α

m∑
i=1

w(i) exp
(
−y(i)ϕk

(
x(i)

)
α

)
,where α = θk

α∗ = arg min
α

∑
2

• define the weights:

w(i) = exp

−y(i)
∑
j ̸=k

θjϕj

(
x(i)

)
• optimizing coordinate k corresponds to minimizing

m∑
i=1

w(i) exp
(
−y(i)ϕk

(
x(i)

)
α

)
• w.r.t. α = θk

• define:

W + :=
∑

i:y(i)ϕk(x(i))=1

w(i) W − :=
∑

i:y(i)ϕk(x(i))=−1

w(i)

• these are the sums of the weights of examples that ϕk classifies correctly and incorrectly, respectively
• finding θk is the same as choosing

α = arg min
α

{
W +e−α + W −eα

}
α = 1

2
log W +

W −

3

	1. Boosting

