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ABSTRACT

Transcription of protein-coding genes in eukaryotic cells is carried out by the pro-
tein complex RNA polymerase II. During the elongation phase of transcription, RNA
polymerase II associates with transcription elongation factors which modulate the ac-
tivity of the transcription complex and are needed to carry out co-transcriptional pro-
cesses. Chapters 2 and 3 of this dissertation describe studies of Spt6 and Spt5, two
conserved transcription elongation factors.

Spt6 is a transcription elongation factor thought to replace nucleosomes in the
wake of transcription. Saccharomyces cerevisiae spt6 mutants express elevated lev-
els of intragenic transcripts, transcripts appearing to initiate from within gene bodies.
We applied high resolution genomic assays of transcription initiation to an spt6-1004
mutant, allowing us to catalog the full extent of intragenic transcription in spt6-1004

and show for the first time on a genome-wide scale that the intragenic transcripts
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observed in spt6-1004 are largely explained by new transcription initiation. We also
assayed chromatin structure genome-wide in spt6-1004, finding a global depletion
and disordering of nucleosomes. In addition to increased intragenic transcription in
spt6-1004, our results also reveal an unexpected decrease in expression from most
canonical genic promoters. Comparing intragenic and genic promoters, we find that
intragenic promoters share some features with genic promoters. Altogether, we pro-
pose that the transcriptional changes in spt6-1004 are explained by a competition for
transcription initiation factors between genic and intragenic promoters, which is made
possible by a global decrease in nucleosome protection of the genome.

Spt5 is another transcription elongation factor, important for the processivity of
the transcription complex and many transcription-related processes. To study the
requirement for Spt5 in vivo, we applied multiple genomic assays to Schizosaccha-

romyces pombe cells depleted of Spt5. Our results reveal an accumulation of RNA
polymerase II over the 5′ ends of genes upon Spt5 depletion, and a progressive de-
crease in transcript abundance towards the 3′ ends of genes. This is consistent with a
model in which Spt5 depletion causes transcription elongation defects and increases
early termination. We also unexpectedly discover that Spt5 depletion causes hun-
dreds of antisense transcripts to be expressed across the genome, primarily initiating
from within the first 500 base pairs of genes.

The expression of intragenic transcripts when transcription elongation factors are
disrupted suggests that cells have evolved to prevent spurious intragenic transcrip-
tion. However, some cases of intragenic transcription are consistently detected in
wild-type cells, and some of these cases are known to be important for different bio-
logical functions. Chapter 4 of this dissertation describes our efforts to better under-
stand the functions of intragenic transcription in wild-type cells by studying uncharac-
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terized instances of intragenic transcription. To discover uncharacterized instances
of intragenic transcription, we applied high resolution genomic assays of transcrip-
tion initiation to wild-type Saccharomyces cerevisiae under three stress conditions.
For the condition of oxidative stress, we show that intragenic transcripts are generally
expressed at lower levels than genic transcripts, and that many intragenic transcripts
are likely to be translated at some level. By comparing intragenic transcription in
three yeast species, we find that most examples of oxidative-stress regulated intra-
genic transcription identified in S. cerevisiae are not conserved. Finally, we show that
the expression of an oxidative-stress-induced intragenic transcript at the gene DSK2
is needed for S. cerevisiae to survive in conditions of oxidative stress.
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Chapter 1

Introduction

1.1 A brief introduction to transcription

In eukaryotic cells, transcription of protein-coding genes is carried out by the protein
complex RNA polymerase II (Pol II), and broadly occurs in three sequential stages
of transcription initiation, elongation, and termination (Shandilya and Roberts, 2012).
During each of these stages, the Pol II complex is associated with distinct sets of fac-
tors which modulate the activity of Pol II and carry out co-transcriptional processes
such as RNA capping, RNA splicing, histone modification, RNA cleavage, and RNA
polyadenylation. Given how fundamental transcription is to gene expression, it is un-
surprising that every stage of transcription is highly regulated.

To get a rough idea of just how tightly transcription is regulated, it is useful to
consider a back-of-the-envelope calculation of the specificity of transcription initia-
tion in the human genome. That is, what proportion of the human genome at which
transcription could initiate does transcription initiation actually occur?

The number of positions at which transcription could theoretically initiate is sim-
ply the size of the genome: The human genome is approximately three billion base
pairs in length (BNID 111378, Weber et al. (2009)), and since each base pair can be
transcribed from each of its two strands, there are 6× 109 available positions.
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The number of positions at which transcription does initiate can be estimated from
the number of genes transcribed by Pol II and the number of positions that Pol II
initiates from for each gene. At last count, the human genome contains about twenty
thousand protein-coding genes (The ENCODE Project Consortium, 2012). To be
conservative in our estimate with regards to specificity, we will assume that all twenty
thousand genes are expressed. We also know that protein-coding genes are only
a subset of the genes transcribed by Pol II: Pol II also transcribes multiple classes
of non-coding genes, including enhancers and long non-coding RNAs (Kaikkonen
and Adelman, 2018). Compared to protein-coding genes, the number of non-coding
genes is less certain. If we assume that there are five non-coding genes for each
coding gene, this brings our estimate of the number of genes transcribed by Pol II to
1.2× 105 genes.

As you will see from yeast transcription start site data in later chapters, transcrip-
tion initiation for a single gene generally occurs at multiple nucleotides, generating
multiple major transcript isoforms per gene. Assuming that there are, on average, five
major transcription start sites (TSSs) per gene, the proportion of the human genome
at which transcription initiation occurs is(

1.2× 105 genes
) (

5 TSSs
gene

)
(6× 109 possible TSSs) = 1× 10−4.

Our rough estimate says that, when presented with ten thousand positions to choose
from, RNA polymerase starts transcription from only one!1

Many factors are known to contribute to this remarkable specificity. Most notably,
1A similar conclusion is reached by examining ENCODE CAGE-seq data: At the time of writing,

ENCODE reports roughly 150,000 TSS peaks across 30 cell types/cell lines. Assuming the signal is
concentrated at 5 nucleotides per peak, then (1.5×105peaks)(5 nt

peak )
6×109nt = 1

8000 .
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transcription initiation requires the presence of specific DNA sequence motifs, which
increase the probability of Pol II binding to DNA together with necessary initiation
factors (Haberle and Stark, 2018). That factors known to associate with Pol II during
transcription initiation control transcription initiation is unsurprising. A less obvious
fact is that some transcription elongation factors, including histone chaperones and
histone modification enzymes, also play a role in determining where transcription ini-
tiation is allowed to occur (Cheung et al., 2008; Hennig and Fischer, 2013; Kaplan
et al., 2003). Evidence suggests that these elongation factors are likely required to
maintain normal chromatin structure over transcribed regions, and that the disruption
of normal chromatin structure allows Pol II to initiate transcription in regions which
are normally inacessible. Chapters 2 and 3 of this dissertation describe our studies
of Spt6 and Spt5, two of the transcription elongation factors involved in this process.
One phenotype observed when these factors are disrupted is intragenic transcrip-
tion, transcription appearing to arise from within protein-coding sequences. In chap-
ter 4, I describe our efforts to understand how intragenic transcription might play a
role in the cellular response to various stress conditions. The remainder of this intro-
duction provides a brief overview of the considerations taken into account in order to
make the data analyses behind this dissertation as transparent and reproducible as
possible.

1.2 Reproducible data analysis for genomics

My role in the projects in this dissertation is a mix of data scientist and data en-

gineer: I build pipelines for processing (usually genomic) datasets, taking raw data
through processing, statistical analysis, and data visualization. This mostly entails
surveying available tools, selecting the tools most suitable for the task, and coding
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solutions to problems when existing tools are inadequate.
The analysis of complex datasets like those in genomics presents challenges to

achieving transparency and reproducibility when reporting methods and results. In
building the data analysis pipelines behind the results of this dissertation, I have tried
tomeet these challenges by following best practices that would be standards for publi-
cation in an ideal world. All of my data analyses are open source (github.com/winston-
lab), and are designed to be reproducible by others: For all publications, a self-
contained archive is uploaded which includes everything needed to go from raw data
to the figures and results of the publication (e.g., DOI:10.5281/zenodo.1409826).
This level of accessibility is greatly facilitated by building data analyses using Snake-
make (Köster and Rahmann, 2012), one of several available frameworks for workflow
management (Di Tommaso et al., 2017; Voss et al., 2017). Snakemake’s scalable ex-
ecution and its ability to specify dependencies in virtual environments allowworkflows
to truly be reproducible: data analyses can be re-run on personal computers, com-
puting clusters, or cloud environments, and the exact versions of the software used
when initially running the data analysis will automagically be deployed.

Open sharing of data and code like this is essential to the scientific process. When
analysis pipelines routinely consist of tens of steps with tens of parameters each,
seeing the data and code is the only way for those interested to know exactly how
the data were handled. Altogether, this allows for more informed evaluation of results
from the literature, as well as the possibility of finding and correcting errors in analysis.

4

https://github.com/winston-lab
https://github.com/winston-lab
https://doi.org/10.5281/zenodo.1409826


1.3 Bibliography

Cheung, V., Chua, G., Batada, N. N., Landry, C. R., Michnick, S. W., Hughes,
T. R., andWinston, F. (2008). Chromatin- and transcription-related factors repress
transcription from within coding regions throughout the saccharomyces cerevisiae
genome. PLoS Biology, 6(11):1–13. 1.1

Di Tommaso, P., Chatzou, M., Floden, E. W., Barja, P. P., Palumbo, E., and
Notredame, C. (2017). Nextflow enables reproducible computational workflows.
Nature Biotechnology, 35(4):316–319. 1.2

Haberle, V. and Stark, A. (2018). Eukaryotic core promoters and the functional basis
of transcription initiation. Nature Reviews Molecular Cell Biology, 19(10):621–637.
1.1

Hennig, B. P. and Fischer, T. (2013). The great repression: chromatin and cryptic
transcription. Transcription, 4(3):97—101. 1.1

Kaikkonen, M. U. and Adelman, K. (2018). Emerging roles of non-coding rna tran-
scription. Trends in Biochemical Sciences, 43(9):654–667. 1.1

Kaplan, C. D., Laprade, L., and Winston, F. (2003). Transcription elongation factors
repress transcription initiation from cryptic sites. Science, 301(5636):1096–1099.
1.1

Köster, J. and Rahmann, S. (2012). Snakemake—a scalable bioinformatics workflow
engine. Bioinformatics, 28(19):2520–2522. 1.2

Shandilya, J. and Roberts, S. G. (2012). The transcription cycle in eukaryotes: From
productive initiation to rna polymerase ii recycling. Biochimica et Biophysica Acta
(BBA) - Gene Regulatory Mechanisms, 1819(5):391 – 400. 1.1

The ENCODE Project Consortium (2012). An integrated encyclopedia of dna ele-
ments in the human genome. Nature, 489:57 EP –. Article. 1.1

Voss, K., Gentry, J., and Van der Auwera, G. (2017). Full-stack genomics pipelining
with gatk4 + wdl + cromwell. In 18th Annual Bioinformatics Open Source Confer-
ence (BOSC 2017). 1.2

Weber, G., Springer, M., Jorgensen, P., Milo, R., and Moran, U. (2009).
Bionumbers—the database of key numbers in molecular and cell biology. Nucleic
Acids Research, 38(suppl_1):D750–D753. 1.1

5



Chapter 2

Genomics of the transcription elongation factor Spt6

2.1 Abstract

Spt6 is a conserved transcription elongation factor thought to replace nucleosomes in
the wake of transcription. Saccharomyces cerevisiae spt6 mutants express elevated
levels of intragenic transcripts, transcripts appearing to initiate from within gene bod-
ies. In this work, we apply two high resolution genomic assays of transcription initia-
tion to catalog the full extent of intragenic transcription in the spt6-1004 mutant, and
show for the first time on a genome-wide scale that the intragenic transcripts observed
in spt6-1004 are largely explained by new transcription initiation. We also assay chro-
matin structure genome-wide in spt6-1004, finding a global depletion and disordering
of nucleosomes. In addition to increased intragenic transcription in spt6-1004, our
results also reveal an unexpected decrease in expression from most canonical genic
promoters. Comparing intragenic and genic promoters, we find that intragenic pro-
moters share some features with genic promoters. Altogether, we propose that the
transcriptional changes in spt6-1004 are explained by a competition for transcription
initiation factors between genic and intragenic promoters, which is made possible by
a global decrease in nucleosome protection of the genome.
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2.2 Collaborators

Steve Doris optimized TSS-seq and ChIP-nexus protocols
generated TSS-seq and ChIP-nexus libraries

Olga Viktorovskaya generated MNase-seq libraries
Magdalena Murawska generated NET-seq libraries

Dan Spatt Northern, Western, and ChIP experiments

The results presented in this chapter are the product of updated versions of the
analyses published in Doris et al. (2018).

2.3 Introduction to Spt6 and intragenic transcription

The conserved transcription elongation factor Spt6 interacts directly with RNA poly-
merase II (Close et al., 2011; Diebold et al., 2010b; Liu et al., 2011; Sdano et al., 2017;
Sun et al., 2010; Yoh et al., 2007), histones (Bortvin and Winston, 1996; McCullough
et al., 2015), and another elongation factor called Spn1/Iws1 (Diebold et al., 2010a;
Li et al., 2018; McDonald et al., 2010). The classification of Spt6 as a transcription
elongation factor is based on its association with elongating Pol II (Andrulis et al.,
2000; Ivanovska et al., 2011; Kaplan et al., 2000; Krogan et al., 2002; Mayer et al.,
2010), and its ability to enhance elongation both in vitro (Endoh et al., 2004) and in

vivo (Ardehali et al., 2009), though Spt6 has also been shown to regulate initiation in
a small number of cases (Adkins and Tyler, 2006; Ivanovska et al., 2011). Evidence
suggests that as Spt6 travels with elongating Pol II, it acts as a histone chaperone,
reassembling nucleosomes after their displacement from DNA due to transcription
(Duina, 2011; Ivanovska et al., 2011). Consistent with its histone chaperone func-
tion, Spt6 influences chromatin structure (Bortvin and Winston, 1996; DeGennaro
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et al., 2013; Ivanovska et al., 2011; Jeronimo et al., 2015; Kaplan et al., 2003; Perales
et al., 2013; van Bakel et al., 2013); Spt6 is also required for some histone modifica-
tions, including H3K36methylation (Carrozza et al., 2005; Chu et al., 2006; Yoh et al.,
2008; Youdell et al., 2008), and, in some organisms, H3K4 and H3K27 methylation
(Begum et al., 2012; Chen et al., 2012; DeGennaro et al., 2013; Wang et al., 2017,
2013).

Spt6-FLAG

Dst1-Myc

Spt6: + +1004 1004

30°C 37°C

1.00
±0.25  

0.75
±0.12  

0.84
±0.01  

0.19
±0.05  

Figure 2.1: Western blot for Spt6 in wild-
type and spt6-1004 cells, at 30°C and af-
ter 80 minutes at 37°C. Spt6 and Dst1
from a spike-in were detected using α-
FLAG and α-Myc antibodies, respectively.
The mean ± standard deviation of three
blots are shown below each lane.

Studies in the yeastsSaccharomyces
cerevisiae and Schizosaccharomyces

pombe have previously examined the re-
quirement for Spt6 in normal transcrip-
tion (Cheung et al., 2008; DeGennaro
et al., 2013; Kaplan et al., 2003; Pathak
et al., 2018; Uwimana et al., 2017; van
Bakel et al., 2013). As Spt6 is essen-
tial for viability in S. cerevisiae, many of
these studies use the same temperature-
sensitive spt6 mutant used in this project, spt6-1004, which encodes an in-frame
deletion of a helix-hairpin-helix domain within Spt6 (Kaplan et al., 2003). When spt6-
1004 cells are shifted from 30°C to 37°C for 80 minutes, bulk Spt6 protein levels are
depleted to about 20% of wild-type levels, though cells are still viable (Figure 2.1) (Ka-
plan et al., 2003). A notable phenotype of the spt6-1004 mutant is the appearance of
intragenic transcripts, transcripts which appear to arise from within protein-coding
sequences in both sense and antisense orientations relative to the coding gene (Fig-
ure 2.2) (Cheung et al., 2008; DeGennaro et al., 2013; Kaplan et al., 2003; Uwimana
et al., 2017).
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coding DNA sequence

intergenic

intragenic

antisense

genic

Figure 2.2: Diagram of transcript orien-
tation with respect to coding DNA se-
quences, for the categories of transcripts
referred to in this document.

Previous genome-widemeasurements
of transcript levels in spt6-1004 relied on
tiled microarrays (Cheung et al., 2008)
and RNA sequencing (DeGennaro et al.,
2013; Uwimana et al., 2017). Studying
intragenic transcription is difficult with
thesemethods, since the signal for an in-
tragenic transcript in the same orientation as the gene it overlaps is convoluted with
the signal from the full-length ‘genic’ transcript (Figures 2.2, 2.3) (Cheung et al., 2008;
Lickwar et al., 2009). Identification of intragenic transcription has thus relied on find-
ing cases where the signal towards the 3′ end of a transcript is greater than the signal
towards the 5′ end. However, this leads to both false positives, due to the inherent
variability of the signal over a transcript, as well as false negatives, due to the require-
ment of the intragenic transcript to be well-expressed relative to its corresponding
genic transcript in order to be detected. Additionally, these methods are assays of
steady-state RNA levels, which makes them unable to distinguish whether the intra-
genic transcripts observed in spt6-1004 result from: A) new intragenic transcription
initiation in the mutant, B) reduced decay of intragenic transcripts which are rapidly
degraded in wild-type, or C) processing of full-length protein-coding RNAs. New tran-
scription initiation has been shown to be responsible for individual cases of intragenic
initiation (Kaplan et al., 2003), but this has not previously been studied on a genome-
wide scale.

To address these challenges to studying intragenic transcription, we applied two
genomic assays to spt6-1004: transcription start-site sequencing (TSS-seq), and
ChIP-nexus of TFIIB, a component of the RNA polymerase II pre-initiation complex
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Figure 2.3: Sense strand RNA-seq signal, sense strand TSS-seq signal, and TFIIB
ChIP-nexus protection at the AAT2 gene, in spt6-1004 after 80 minutes at 37°C.

(PIC). TSS-seq sequences the 5′ end of capped and polyadenylated RNAs (Arribere
and Gilbert, 2013; Malabat et al., 2015), allowing separation of intragenic from genic
RNA signals and identification of intragenic transcript starts with single-nucleotide
resolution (Figure 2.3). ChIP-nexus is a high-resolution chromatin immunoprecipita-
tion technique, in which the immunoprecipitated DNA is exonuclease digested up to
the bases crosslinked with the protein of interest before sequencing (He et al., 2015).
When applied to the PIC component TFIIB, ChIP-nexus reports where transcription
initiation is occurring, thus allowing us to determine if intragenic transcripts in spt6-

1004 result from new transcription initiation.

2.4 TSS-seq and TFIIB ChIP-nexus results for spt6-1004

To study the relationship between Spt6 and transcription, TSS-seq and TFIIB ChIP-
nexus libraries were prepared from wild-type and spt6-1004 cells, after cultures were
shifted from 30°C to 37°C for 80 minutes. In wild-type cells, TSS-seq and TFIIB
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ChIP-nexus recapitulate their expected distributions over the genome: Most TSS
signal is restricted to annotated genic TSSs, while most TFIIB signal is localized
just upstream of the TSS (Figures 2.4, 2.5). In spt6-1004, the signal for both as-
says infiltrates gene bodies, reflecting widespread intragenic expression of capped
and polyadenylated transcripts, and suggesting that new transcription initiation con-
tributes to the intragenic transcription phenotype. Notably, sense strand TSS-seq
signal in spt6-1004 tends to occur towards the 3′ end of genes, while antisense strand
TSS-seq signal tends to occur towards the 5′ end of genes.

wild-type spt6-1004

TSS 1 2 kb TSS 1 2 kb

3
5

2
2

 n
on

ov
er

la
p

p
in

g 
co

d
in

g 
ge

ne
s

0.00 0.02 0.04

sense TSS-seq signal

wild-type spt6-1004

TSS 1 2 kb TSS 1 2 kb

0.000 0.005 0.010

antisense TSS-seq signal

Figure 2.4: Heatmaps of sense and antisense TSS-seq signal from wild-type and
spt6-1004 cells, over 3522 non-overlapping coding genes aligned by wild-type genic
TSS and sorted by annotated transcript length. Data are shown for each gene up
to 300 nucleotides 3′ of the cleavage and polyadenylation site (CPS), indicated by
the white dotted line. Values are the mean of spike-in normalized coverage over two
replicates, in non-overlapping 20 nucleotide bins. Values above the 92nd percentile
are set to the 92nd percentile for visualization.
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Figure 2.5: Heatmaps of TFIIB binding measured by ChIP-nexus, over the same re-
gions shown in Figure 2.4. Values are the mean of library-size normalized coverage
over two replicates, in non-overlapping 20 bp bins. Values above the 85th percentile
are set to the 85th percentile for visualization.

The TSS-seq data were quantified by peak calling and differential expression
analysis, and classified into genomic categories based on their position relative to
coding genes. As suggested by the heatmap visualization (Figure 2.4), we detect
significant induction of over 4000 intragenic and antisense TSSs in spt6-1004 (Fig-
ure 2.6). Compared to previous studies identifying spt6-1004 intragenic transcription
by tiled microarray and RNA-seq (Cheung et al., 2008; Uwimana et al., 2017), we
identify intragenic transcription at over 1000 additional genes (Figure 2.7), with the
additional information of exact start sites for all identified TSSs.

The TSS-seq data also revealed an unexpected downregulation of most genic
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upregulateddownregulated

Figure 2.6: Bar plot of the number
of TSS-seq peaks detected as differ-
entially expressed in spt6-1004 versus
wild-type, both after 80 minutes at 37°C.
The height of each bar is proportional to
the total number of peaks in the category,
including those not found to be signifi-
cantly differentially expressed.

158191

266304

304

366

1093

RNA microarray

RNA-seq

TSS-seq

genes with sense intragenic transcripts

Figure 2.7: Set diagram of the number
of genes reported to have spt6-1004-
induced intragenic transcripts using tiled
microarrays (Cheung et al., 2008), RNA-
seq (Uwimana et al., 2017), and TSS-
seq (this work).

TSSs: In this experiment, we detected a significant downregulation to levels below
67% of wild-type levels at 75% (3579/4792) of genic TSSs (Figure 2.6). As a result of
intragenic/antisense induction and genic repression, expression levels in spt6-1004

of all classes of transcripts become similar to one another (Figure 2.8).
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Figure 2.8: Violin plots of ex-
pression level distributions for
genomic classes of TSS-seq
peaks in wild-type and spt6-
1004, both after 80 minutes
at 37°C. Normalized counts
are the mean of spike-in size
factor normalized counts from
two replicates.
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Figure 2.9:
top) TFIIB ChIP-nexus protection in wild-type and spt6-1004, over 20 kb of

chromosome II flanking the SSA4 gene.
bottom) Expanded view of TFIIB protection over the SSA4 gene.

The changes in transcript levels in spt6-1004 observed by TSS-seq correspond
with substantial differences in the pattern of TFIIB binding on the genome. While
TFIIB in wild-type binds in discrete peaks within promoter regions, TFIIB in spt6-

1004 binds much more promiscuously, with many loci having TFIIB signal spread
over broad regions of the genome (Figure 2.9). This difference in binding pattern
makes peak calling ineffective for quantifying TFIIB signal in this case: ChIP-seq
peak callers generally use different algorithms for calling ‘narrow’ peaks (e.g. for
sequence-specific transcription factors) and ‘broad’ peaks (e.g. for histone modifica-
tions), meaning that a single algorithm is unable to call a unified set of peaks that is
meaningful for differential binding analyses between wild-type and spt6-1004. There-
fore, to see if changes in transcript levels in spt6-1004 correspond to changes in tran-
scription initiation, we compared the change in TSS-seq signal at TSS-seq peaks in
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spt6-1004 to the change in TFIIB ChIP-nexus signal in the window extending 200 bp
upstream of the TSS-seq peak. Changes in TSS-seq signal in spt6-1004 are asso-
ciated with a change in TFIIB signal of the same sign at over 82% of TSSs of any
genomic class (Figure 2.10), indicating that the increase in intragenic transcript lev-
els and decrease in genic transcript levels observed in spt6-1004 are in large part
explained by changes in transcription initiation.

n=4809 n=4689 n=2102

genic intragenic antisense

-5 0 5 -5 0 5 -5 0 5

-3

0

3

6

TSS-seq log2
spt6-1004

WT

TFIIB ChIP-nexus

log2
spt6-1004

WT

Figure 2.10: Scatterplots of fold-change in spt6-1004 over wild-type, comparing TSS-
seq and TFIIB ChIP-nexus. Each point represents a TSS-seq peak paired with the
window extending 200 bp upstream of the TSS-seq peak summit for quantification of
TFIIB ChIP-nexus signal. Fold-changes are regularized fold-change estimates from
DESeq2, with size factors determined from the S. pombe spike-in (TSS-seq), or S.
cerevisiae counts (ChIP-nexus).

2.5 MNase-seq results from spt6-1004

Because a primary function of Spt6 is to act as histone chaperone that reassembles
nucleosomes in the wake of transcription (Duina, 2011), it is reasonable to expect that
the transcriptional changes seen in spt6-1004 would be associated with changes in
chromatin structure. The requirement for Spt6 in maintaining normal chromatin struc-
ture has been demonstrated in previous studies (Bortvin andWinston, 1996; DeGen-

15



naro et al., 2013; Ivanovska et al., 2011; Jeronimo et al., 2015; Kaplan et al., 2003;
Perales et al., 2013; van Bakel et al., 2013). To re-examine this requirement in higher
resolution, we assayed nucleosome protection genome-wide using micrococcal nu-
clease digestion of chromatin followed by sequencing (MNase-seq).

0
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wild-type
spt6-1004

MNase-seq dyad signal

Figure 2.11: Average MNase-seq dyad signal in wild-type and spt6-1004, over 3522
non-overlapping coding genes aligned by wild-type +1 nucleosome dyad. The solid
line and shading are the median and inter-quartile range of the mean spike-in nor-
malized coverage over two replicates (spt6-1004) or one experiment (wild-type), in
non-overlapping 20 bp bins.

In wild-type, the MNase-seq data recapitulate the expected signature over genes,
with a nucleosome-depleted region upstream of a strongly positioned ‘+1’ nucleo-
some, and a regularly phased array of nucleosomes over the gene body (Figure 2.11).
In spt6-1004, nucleosome signal is severely reduced at canonical nucleosome posi-
tions and spreads into inter-nucleosome regions.
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Figure 2.12: Contour plot of the distribu-
tions of nucleosome occupancy and fuzzi-
ness in wild-type and spt6-1004. Dashed
lines indicate median values.

Changes in aggregate nucleosome
signal such as those observed in Figure
2.11 are the combination of changes to
nucleosome occupancy (the number of
reads assigned to a nucleosome), fuzzi-
ness (the standard deviation of read po-
sitions for a nucleosome), and position
(the coordinate with the maximum reads
for a nucleosome) (Chen et al., 2013).
Using DANPOS2 (Chen et al., 2013), we
called nucleosomepositions and quantified thesemetrics for wild-type and spt6-1004.
Wild-type nucleosomes span a relatively wide range of occupancy and fuzziness
space, with highly occupied nucleosomes tending to be less fuzzy (i.e., more well-
positioned) (Figure 2.12). In spt6-1004, the population of nucleosomes is much more
homogeneous: nucleosome occupancy is decreased globally, and nucleosome fuzzi-
ness is restricted to the high end of the wild-type distribution.

Previous studies observed two trends: 1) In wild-type cells, nucleosome position-
ing is weaker over highly transcribed genes than over moderately transcribed genes
(Shivaswamy et al., 2008), and 2) In spt6-1004 cells, the decrease in nucleosome
occupancy is greater for highly transcribed genes (Ivanovska et al., 2011). To re-
examine these trends, we looked at the MNase-seq data in the context of NET-seq
data, which reports the position of actively transcribing RNAPII and reflects a gene’s
level of transcription (Figure 2.13) (Churchman andWeissman, 2012). The data sup-
port the first trend: in wild-type, genes with the strongest NET-seq signal have weak
patterning of MNase-seq signal. However, we find no obvious relationship between
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transcription level and the nucleosome occupancy changes observed in spt6-1004

(Figure 2.13): Geneswith the greatest transcription do tend to have lowerMNase-seq
signal in spt6-1004, but this is expected since these genes also have lower MNase-
seq signal in wild-type. The discrepancy with prior work might be explained by the
greater resolution and breadth of MNase-seq versus MNase and microarray of chro-
mosome III (Ivanovska et al., 2011).
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2.5.1 Clustering ofMNase-seq profiles at spt6-1004-induced intragenic TSSs

The aggregateMNase-seq dyad signal around all spt6-1004 intragenic TSSs is aperi-
odic (Figure 2.15, top left panel), which occurs as a result of destructive interference
from offset nucleosome phasing patterns. To discover these phasing patterns, we
used the wild-type and spt6-1004MNase-seq data flanking intragenic TSSs to train a
self-organizingmap to assign TSSswith similar MNase-seq patterns to nearby nodes
in a rectangular grid (Figure 2.14). This allowed us to see that, although there is con-
siderable diversity in the nucleosome pattern surrounding intragenic TSSs, most in-
tragenic TSSs occur in areas between the positions of nucleosome dyads. By hierar-
chically clustering the nodes of the self-organizingmap, we further grouped intragenic
TSSs into three major clusters differing primarily by the phasing of the nucleosome
array relative to the TSS, as shown in Figure 2.15. In all three clusters, nucleosomes
are disrupted to similar levels in spt6-1004.

Because GC-poor DNA sequences in S. cerevisiae are nucleosome disfavoring
and are known to occur in promoter regions (Iyer and Struhl, 1995; Kaplan et al.,
2008; Tillo and Hughes, 2009; Zhang et al., 2009), we also examined the GC content
surrounding the three clusters of intragenic TSSs. For all three clusters, the GC con-
tent of the DNA drops just upstream of the TSS to a slightly lesser degree than for
genic TSSs (Figure 2.15).
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Figure 2.15:
left column) Average MNase-seq dyad signal for spt6-1004 intragenic TSSs, both

aggregated and grouped into three clusters by the wild-type and spt6-
1004 MNase-seq dyad signal flanking the TSS, as well as all genic
TSSs detected in wild-type. Values are the mean of spike-in normal-
ized dyad coverage in non-overlapping 10 bp bins, averaged over two
replicates (spt6-1004) or one experiment (wild-type). The solid line
and shading are the median and inter-quartile range.

right column) Average GC content of the DNA sequence in a 21 bp window, as
above.
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2.6 Other features of spt6-1004 intragenic promoters

MNase-seq indicates that nucleosomes are lost across the entire genome in spt6-

1004. However, TSSs observed in spt6-1004 occur in specific locations, suggesting
that loss of nucleosomes is necessary but not sufficient for intragenic transcription,
and that additional features such as the drop in GC content at intragenic TSSs (Figure
2.15) may be required. The resolution with which we were able to identify intragenic
TSSs allowed us to closely examine sequence features that might contribute to intra-
genic transcription.

2.6.1 Information content and sequence preference

genic

intragenic

antisense

-10 -5 TSS +5 +10 nt

0.0

0.4

0.0

0.4

0.0

0.4

bits

TSSs in spt6-1004

Figure 2.16: Sequence logos depicting in-
formation content and sequence prefer-
ence of TSS-seq reads overlapping genic
and intragenic TSS-seq peaks in spt6-
1004.

To examine the DNA sequence prefer-
ence of TSSs in spt6-1004, we aligned
the sequences of all TSS-seq reads
overlapping TSS-seq peaks of each
class, and calculated the information
content and sequence distribution for
each class. Intragenic TSSs have a se-
quence preference almost identical to
the previously observed sequence pref-
erence of genic TSSs (Figure 2.16) (Mal-
abat et al., 2015), suggesting that RNA
polymerase initiates transcription simi-
larly at genic and intragenic TSSs.
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2.6.2 Enrichment of the TATA box

A characteristic feature of canonical genic promoters is the presence of a TATA box
or TATA-like DNA element which allows for the recruitment of Pol II and general tran-
scription factors via binding of the TFIID complex, which includes TATA-binding pro-
tein (Rhee and Pugh, 2012). To examine whether the presence of TATA elements
might contribute to spt6-1004 intragenic transcription, we looked for exact matches
to the TATA consensus sequence TATAWAWR in the window extending 200 nu-
cleotides upstreamof spt6-1004TSSs, findingmatches at 13.7%of regions upstream
of intragenic TSSs and 24.7% for antisense TSSs, versus 24.4% for all genic TSSs
and 8.9% for random locations in the genome. Moreover, the TATA elements found
near intragenic and antisense TSSs are highly concentrated in the region 50 to 100
nucleotides upstream of the TSS, where TATA elements are most often found for
genic TSSs (Figure 2.17). This further supports the model that spt6-1004 intragenic
promoters are sequences similar to canonical genic promoters, which become ac-
cessible for transcription initiation when the normal chromatin state is disturbed.

0.000

0.008

-200 nt -150 -100 -50 TSS

sc
al

ed
 d

en
si

ty

antisense
genic
intragenic

TATA consensus density

Figure 2.17: Scaled density
of exact matches to the mo-
tif TATAWAWR upstream of
TSSs. For each category, a
Gaussian kernel density esti-
mate of the positions of motif
occurrences is scaled by the
number of motif occurrences
per region.
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2.6.3 Sequence motifs discovered

To discover additional sequence features of spt6-1004 intragenic promoters, we per-
formed de novomotif discovery using MEME-ChIP (Machanick and Bailey, 2011) for
the regions -100 to +30 nucleotides relative to TSS summits. Themost enrichedmotif
found by MEME at both intragenic and antisense spt6-1004 TSSs is, with respect to
sense genic transcription, a GA-rich motif with 3-nucleotide periodicity (Figure 2.18).
This motif occurs at only a small subset of intragenic TSSs, but is highly unlikely to
occur by chance (compare the expected to observed number of occurrences in Fig-
ure 2.18). The motif is not enriched at genic TSSs upregulated in spt6-1004, and is
not an obvious match to a DNA-binding factor in the databases searched (de Boer
andHughes, 2011; MacIsaac et al., 2006; Newburger and Bulyk, 2008; Ozonov et al.,
2012; Teixeira et al., 2017; Weirauch et al., 2014; Zhu and Zhang, 1999). If this motif
is directly related to intragenic transcription, we speculate that it might create a DNA
structure favorable for transcription initiation.

2.7 Discussion

In this work, we integrated multiple quantitative genomic approaches to study the
conserved transcription elongation factor Spt6. Our TSS-seq and TFIIB ChIP-nexus
results reveal the full extent of intragenic and antisense transcript expression in spt6-
1004, and show that these transcripts are largely explained by new RNA Pol II tran-
scription initiation. Our MNase-seq results show that this new transcription initiation
happens in the context of a global depletion and disordering of nucleosomes from
chromatin. We speculate that this dramatic decrease in nucleosome protection of the
genome leads to intragenic transcription by allowing initiation factors to access nor-
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Figure 2.18: Sequence logos of motifs discovered by MEME (Bailey et al., 2015)
in the window -100 to +30 bp relative to spt6-1004 intragenic and antisense TSSs.
For each motif, the observed number of occurrences and the expected number of
occurrences if the input sequences were scrambled are shown.

mally inaccessible promoter-like sequences within coding sequences. This model is
supported by the similarities we observe between genic and intragenic promoters in
DNA GC content, initiation motif, and TATA element frequency. This may also ex-
plain the unexpected decrease in transcription initiation we see at almost all genic
promoters in spt6-1004: Assuming that the pool of transcription initiation factors in
the cell is limiting, then making thousands of additional binding sites available to the
initiation machinery would decrease the frequency at which the initiation machinery
finds its correct targets at genic promoters.
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2.8 Methods

2.8.1 Yeast strain construction and growth conditions

All yeast strains were constructed by standard yeast transformation or crosses. The
spt6-1004 and wild-type strains were grown as previously described (Cheung et al.,
2008): Cells were grown in YPD at 30°C to a density of approximately 1×107 cells/ml
(OD600 = 0.6), at which point an equal volume of YPD medium pre-warmed to 44°C
was added, and the cultures were shifted to 37°C for 80 minutes.

2.8.2 Western blotting

The protocols for western blotting and quantification are described in Doris et al.
(2018).

2.8.3 Sequencing library preparation
(TSS-seq, ChIP-nexus, MNase-seq, NET-seq)

All library preparation methods are detailed in Doris et al. (2018).

2.8.4 Genome builds

The genome build used for S. cerevisiae was R64-2-1 (Engel et al., 2014), and the
genome build used for S. pombe was ASM294v2 (Wood et al., 2002).

2.8.5 TSS-seq data analysis

An up-to-date version of the Snakemake (Köster and Rahmann, 2012) workflow used
to process TSS-seq libraries is maintained at github.com/winston-lab/tss-seq. At the
time of writing, removal of adapter sequences and random hexamer sequences from
the 3′ end of the read and 3′ quality trimming were performed using cutadapt (Martin,
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2011). The random hexamer molecular barcode on the 5′ end of the read was then
removed and processed using a custom Python script (adapted from Mayer et al.
(2015)). Reads were aligned to the combined S. cerevisiae and S. pombe refer-
ence genomes using Tophat2 (Kim et al., 2013) without a reference transcriptome,
and uniquely mapping reads were selected using SAMtools (Li et al., 2009). Reads
mapping to the same location as another read with the samemolecular barcode were
identified as PCR duplicates and removed using a custom Python script (adapted
from Mayer et al. (2015)). Coverage of the 5′-most base, corresponding to the TSS,
was extracted using bedtools genomecov (Quinlan and Hall, 2010) and normalized
to the total number of uniquely mapping, non-duplicate S. pombe alignments. Qual-
ity statistics of raw, cleaned, non-aligning, and uniquely aligning non-duplicate reads
were assessed using FastQC (Andrews, 2010).

The pipeline additionally performs TSS-seq peak calling, differential expression,
classification of peaks into genomic categories, sequence logo visualization, motif
enrichment analysis, de novo motif discovery, gene ontology analysis (Young et al.,
2010), and data visualization with the option to separate data into clusters of similar
signal.

2.8.5.1 Reannotation of S. cerevisiae TSSs using TSS-seq data

TSS-seq coverage from two replicates of a wild-type S. cerevisiae strain grown at
30°C in YPD was averaged and used to adjust the 5′ ends of an annotation of major
transcript isoforms based on TIF-seq data (Pelechano et al., 2013). The 5′ end of
the original annotation was changed to the position of maximum TSS-seq signal in a
window ± 250 nt of the original 5′ end if the maximum TSS-seq signal was greater
than the 95th percentile of all non-zero TSS-seq signal.
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2.8.5.2 TSS-seq peak calling

TSS-seq data representing transcription from a single promoter tends to occur as a
cluster of signal distributed over a range of positions, rather than a single nucleotide
(Arribere and Gilbert, 2013; Malabat et al., 2015). It is reasonable to consider such
a cluster of TSS-seq signal as a single entity, because the signals within the cluster
are usually highly correlated to one another across different conditions. Therefore, to
identify TSSs from TSS-seq data and quantify them for downstream analyses such
as differential expression, it is necessary to annotate these groups of TSS-seq signal
by using the data to perform peak-calling.

At the time of writing, TSS-seq peak calling for a given experimental group was
performed by 1-D watershed segmentation of the data for each sample in the group,
followed by filtering for reproducibility within the group by the Irreproducible Discovery
Rate (IDR) method (Li et al., 2011). First, a smoothed version of the TSS-seq cov-
erage is generated for each sample using an adaptive two-stage kernel density esti-
mation with a discretized Gaussian kernel (Silverman, 1986). For a given nucleotide,
the adaptive kernel bandwidth, σadaptive, is given by

σadaptive = σpilot

(
ρpilot
g

)−α

,

where σpilot is the standard, fixed bandwidth of a Gaussian kernel used to calculate
the pilot signal density ρpilot at that nucleotide, g is the geometric mean of ρpilot over the
whole genome, and α is a parameter in [0,1] that determines the degree to which the
pilot density ρpilot affects σadaptive. The adaptive kernel adjusts the kernel bandwidth
to be smaller in regions of high signal density and larger in regions of lower signal
density, allowing the smoother to better accommodate both ‘sharp’ TSSs where the
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signal is distributed over a relatively small window, as well as ‘broad’ TSSs where the
signal is more dispersed. For all analyses in this document, adaptive smoothing was
performed with σpilot = 10 and α = 0.2.

Following smoothing, an initial set of peaks is formed by assigning all nonzero
signal in the original, unsmoothed coverage to the nearest local maximum of the
smoothed coverage, and taking the minimum and maximum genomic coordinates of
the original coverage as the peak boundaries for each localmaximumof the smoothed
coverage. Peaks are then trimmed to the smallest genomic interval that includes 95%
of the original coverage, and the probability of the peak being generated by noise is
estimated by a Poisson model where λ, the expected coverage, is the maximum of
the expected coverage over the chromosome and the expected coverage in the 2 kb
window upstream of the peak (à la the ChIP-seq peak caller MACS2 (Zhang et al.,
2008))1. Finally, peaks are ranked by their significance under the Poissonmodel, and
a final list of peaks for the group is generated using the IDR method (IDR = 0.1) (Li
et al., 2011). In brief, IDR compares ranked lists of regions in order to set a cutoff,
beyond which the regions are no longer consistent between replicates.

The python script used for 1-D watershed segmentation of TSS-seq data is avail-
able as part of the TSS-seq pipeline, and the IDR implementation used in the pipeline
is also available on GitHub.

2.8.5.3 TSS differential expression analysis

For TSS-seq differential expression analysis, TSS-seq peak-calling was performed
as described above for both S. cerevisiae and the S. pombe spike-in. The read

1Currently, the test is for the max signal of the peak. In Doris et al. (2018), the test was for the
sum of the signal over the peak, which resulted in greater numbers of peaks called in spt6-1004. The
algorithm was changed while processing data for chapter 4 in order to only call peaks that have major
TSSs.
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counts for each peak in each condition were used as the input to differential ex-
pression analysis by DESeq2 (Love et al., 2014), with the alternative hypothesis
|log2 (fold-change)| > 1.5 and a false discovery rate of 0.1. To normalize by spike-in,
the size factors of the S. pombe spike-in counts were used as the size factors for S.
cerevisiae, although we note that due to the median of ratios normalization used in
DESeq2, the major TSS-seq results of this work are still observed when S. cerevisiae
size factors are used.

2.8.5.4 Classification of TSS-seq peaks into genomic categories

TSS-seq peaks were assigned to genomic categories based on their position relative
to the transcript annotation described above and an annotation of all verified open
reading frames (ORFs) and blocked reading frames in S. cerevisiae (Engel et al.,
2014). First, ‘genic’ regions were defined as follows: If a gene was present in both
the transcript and ORF annotations, the genic region was defined as the interval (an-
notated TSS-30 nt, start codon). If a gene was present in the transcript annotation but
not the ORF annotation, the genic region was defined as the interval (annotated TSS
- 30 nt, annotated TSS + 30 nt). If a gene was present only in the ORF annotation,
the genic region was defined as the interval (start codon - 30 nt, start codon).

For the purposes of peak classification, regions were considered overlapping if
they had at least one base of overlap. TSS-seq peaks were classified as genic if they
overlapped a genic region on the same strand. Peaks were classified as intragenic
if they were not classified as a genic peak, and their summit position overlapped an
open or closed reading frame on the same strand. Peaks were classified as antisense
if their summit position overlapped a transcript on the opposite strand. Finally, peaks
were classified as intergenic if they did not overlap a transcript, reading frame, or
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genic region on either strand.

2.8.5.5 TSS information content and sequence composition

TSS-seq alignments were pooled for all replicates in a condition, and the DNA se-
quence flanking the position of every read overlapping TSS-seq peaks of a partic-
ular genomic category was extracted using SAMtools (Li et al., 2009) and bedtools
(Quinlan and Hall, 2010). The information content and sequence composition of the
sequences was quantified usingWebLogo (Crooks et al., 2004), with the zeroth-order
Markov model of the S. cerevisiae genomic sequence as the background composi-
tion. Sequence logos were plotting using helper functions from ggseqlogo (Wagih,
2017).

2.8.5.6 Enrichment of the TATA box

An up-to-date version of the Snakemake (Köster and Rahmann, 2012) workflow used
to test the enrichment of motifs is maintained at github.com/winston-lab/motif-
enrichment. To test for enrichment of consensus TATA boxes, FIMO (Grant et al.,
2011) was used to search the S.cerevisiae genome for matches to the query motif
TATAWAWR (where the ambiguous bases are equiprobable) at a p-value thresh-
old of 6× 10−4. Regions extending 200 nucleotides upstream of TSS summits were
merged if they were overlapping, and were considered to contain a consensus TATA
box if the entire motif was overlapping the region on the same strand. The frequency
of motif occurrences in the regions of interest was compared to the frequency of oc-
currences in the regions upstream of 6000 randomly chosen locations in the genome,
using Fisher’s exact test.
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2.8.5.7 De novo motif discovery

De novo motif discovery for the regions around TSSs was performed by running
MEME-ChIP (Machanick and Bailey, 2011) on the DNA sequence -100 to +30 nu-
cleotides from the TSS summits of the genomic classes of TSSs significantly upreg-
ulated in spt6-1004 versus wild-type.

2.8.6 ChIP-nexus data analysis

An up-to-date version of the Snakemake (Köster and Rahmann, 2012) workflow used
to process ChIP-nexus libraries is maintained at github.com/winston-lab/chip-nexus.
At the time of writing, filtering for reads containing the constant region of the adapter
on the 5′ end of the read, 3′ adapter removal, and 3′ quality trimming were performed
using cutadapt (Martin, 2011). The random pentamer molecular barcode on the 5′

end of the read was then removed and processed using a custom Python script mod-
ified fromMayer et al. (2015). Reads were aligned to the combined S. cerevisiae and
S. pombe genomes using Bowtie 2 (Langmead and Salzberg, 2012), and uniquely
mapping alignments were selected using SAMtools (Li et al., 2009). Reads mapping
to the same location as another read with the samemolecular barcode were identified
as PCR duplicates and removed using a custom Python script modified from Mayer
et al. (2015). Coverage of the 5′-most base, corresponding to the point of crosslink-
ing, was extracted using bedtools genomecov (Quinlan and Hall, 2010). The median
fragment size estimated byMACS2 (Zhang et al., 2008) over all samples was used to
generate coverage of factor protection and fragment midpoints, by extending reads
to the fragment size, or by shifting reads by half the fragment size, respectively. Cov-
erage was normalized to the total number of reads uniquely mapping to S. cerevisiae
(the S. pombe spike-in was not used for normalization due to the low number of reads
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mapping to S. pombe). Quality statistics of raw, cleaned, non-aligning, and uniquely
aligning non-duplicate reads were assessed using FastQC (Andrews, 2010).

TheChIP-nexus pipeline additionally performs peak calling, differential occupancy
analysis, and data visualization with the option to separate data into clusters of similar
signal.

An second Snakemake workflow for TFIIB-specific analyses is maintained at
github.com/winston-lab/chip-nexus-tfiib, and performs classification of TFIIB peaks
into genomic categories, motif enrichment analysis, and gene ontology analysis.

2.8.6.1 ChIP-nexus peak calling

Anumber of tools have been created specifically for peak-calling using data fromhigh-
resolution ChIP techniques such as ChIP-nexus and ChIP-exo (Hansen et al., 2016;
Wang et al., 2014). When applied to our TFIIB ChIP-nexus data, these tools tended
to split what appeared to be a single TFIIB binding event into multiple peaks. This
may be because TFIIB crosslinks to DNA at multiple points (Rhee and Pugh, 2012),
suggesting that while these tools may work well for factors that bind symmetrically to
DNA with a single crosslinking point on either side, there is room for improvement for
factors with more complex crosslinking patterns.

The ChIP-nexus pipeline currently performs peak calling for a condition using the
standard ChIP-seq peak caller MACS2 (Zhang et al., 2008), followed by filtering for
reproduciblity by the Irreproducible Discovery Rate (IDR) method (IDR = 0.1 for all
analyses in this chapter) (Li et al., 2011).
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2.8.6.2 TFIIB ChIP-nexus differential occupancy analysis

For TFIIBChIP-nexus differential binding analysis, TFIIB peakswere called byMACS2
and IDR filtering as described above. A non-redundant list of peaks called in the
condition and control groups being compared was generated using bedtools multiin-
ter (Quinlan and Hall, 2010), and the counts of fragment midpoints for each peak in
each sample were used as the input to differential binding analysis by DESeq2 (Love
et al., 2014), with the alternative hypothesis |log2 (fold-change)| > 1.5 and a false dis-
covery rate of 0.1. For estimation of change in TFIIB binding upstream of TSS-seq
peaks, TFIIB fragment midpoint counts in the window extending 200 bp upstream of
the TSS-seq peak summit were used as the input to DESeq2. S. cerevisiae counts
were used for size factor calculation.

2.8.6.3 Classification of TFIIB ChIP-nexus peaks into genomic categories

As for TSS-seq peaks, TFIIB ChIP-nexus peaks were assigned to genomic cate-
gories based on their position relative to the transcript annotation described above,
an annotation of all verified open reading frames (ORFs) and blocked reading frames
(Engel et al., 2014), and an annotation of ‘genic’ regions derived from the transcript
and ORF annotations. TFIIB ChIP-nexus peaks were classified as genic if they over-
lapped a genic region. Peaks were classified as intragenic if they were not classified
as a genic peak, and the entire peak overlapped an open or closed reading frame.
Finally, peaks were classified as intergenic if they did not overlap a transcript, reading
frame, or genic region.
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2.8.7 Comparison of TSS-seq to TFIIB ChIP-nexus

An up-to-date version of the Snakemake (Köster and Rahmann, 2012) workflow used
to compare TSS-seq data to TFIIB ChIP-nexus data is maintained at
github.com/winston-lab/tss-seq-vs-tfiib-nexus. The pipeline matches and compares
peaks from the two assays, and also performs the TFIIB differential occupancy anal-
ysis over windows upstream of TSS-seq peaks shown in section 2.4 and described
in section 2.8.6.2.

2.8.8 MNase-seq data analysis

An up-to-date version of the Snakemake (Köster and Rahmann, 2012) workflow used
to demultiplex paired-end MNase-seq libraries is maintained at github.com/winston-
lab/demultiplex-paired-end. At the time of writing, demultiplexing was performed us-
ing fastq-multx (Aronesty, 2013), allowing one mismatch to the barcode, followed by
filtering for and removal of the barcode on read 2 using cutadapt (Martin, 2011).

An up-to-date version of the Snakemake (Köster and Rahmann, 2012) workflow
used to processMNase-seq libraries ismaintained at github.com/winston-lab/mnase-
seq. At the time of writing, 3′ quality trimming was performed using cutadapt (Martin,
2011). Reads were aligned to the combined S. cerevisiae and S. pombe genome
using Bowtie 1 (Langmead et al., 2009), and correctly paired alignments were se-
lected using SAMtools (Li et al., 2009). Coverage of nucleosome protection and nu-
cleosome dyads were extracted using bedtools (Quinlan and Hall, 2010) and custom
shell scripts to get the entire fragment or the midpoint of the fragment, respectively.
Smoothed nucleosome dyad coverage was generated by smoothing dyad coverage
with a Gaussian kernel of 20 bp bandwidth. Coverage was normalized to the total
number of correctly paired S. pombe fragments. Quality statistics of raw, cleaned,
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non-aligning, and correctly paired reads were assessed using FastQC (Andrews,
2010).

TheMNase-seq pipeline additionally performs quantification of nucleosome prop-
erties, and data visualization with the option to separate data into clusters of similar
signal.

2.8.8.1 Quantification of nucleosome properties

Quantification of nucleosome occupancy, fuzziness, and position shifts were calcu-
lated using DANPOS2 (Chen et al., 2013), with spike-in normalization by scaling the
total counts in condition group libraries by

mean observed percent spike-in in condition libraries
mean observed percent spike-in in control libraries .

2.8.8.2 Clustering of MNase-seq signal at spt6-1004 intragenic TSSs

The Snakemake (Köster and Rahmann, 2012) workflow for clustering MNase-seq
data by self/super-organizing map and hierarchical clustering is maintained at
github.com/winston-lab/cluster-mnase-seq. To cluster spt6-1004 intragenic TSSs
based on surrounding MNase-seq signal, spike-in normalized MNase-seq dyad sig-
nal in the window ±150 bp of the TSS-seq peak summit of all intragenic TSS-seq
peaks significantly upregulated in spt6-1004 was binned by taking the mean signal
in non-overlapping 5 bp bins, and then averaged taking the mean of two replicates
(spt6-1004) or one experiment (wild-type). The data were then standardized over
each TSS, and the wild-type and spt6-1004 data were used as equally weighted in-
put layers to a super-organizing map (Wehrens and Buydens, 2007) trained on the
input data to assign similar MNase-seq observations in 60-dimensional input space
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to similar nodes in a 2-dimensional (6 × 8) rectangular grid. The 48 ‘code vectors’
representing the typical MNase-seq pattern for each node (visualized in Figure 2.14)
were then clustered by agglomerative hierarchical clustering using sum of squares
distance and Ward linkage. The resulting dendrogram was cut to produce the three
clusters of MNase-seq signal shown in Figures 2.14 and 2.15.

2.8.9 NET-seq data analysis

An up-to-date version of the Snakemake (Köster and Rahmann, 2012) workflow used
to process NET-seq libraries is maintained at github.com/winston-lab/net-and-rna-
seq.

At the time of writing, removal of adapter sequences from the 3′ end of the read
and 3′ quality trimming were performed with cutadapt (Martin, 2011). Reads were
aligned to the S. cerevisiae genome using Tophat2 (Kim et al., 2013) without a ref-
erence transcriptome, and uniquely mapping reads were selected using SAMtools
(Li et al., 2009). Coverage of the 5′-most base of the read, corresponding to the 3′-
most base of the nascent RNA and the active site of elongating RNA polymerase,
was extracted using bedtools genomecov (Quinlan and Hall, 2010) and normalized
to the total number of uniquely mapped reads. Quality statistics of raw, cleaned, non-
aligning, and uniquely aligning reads were assessed using FastQC (Andrews, 2010).

The NET-seq pipeline additionally performs ab initio transcript annotation (Pertea
et al., 2015), differential expression analysis, and data visualization with the option to
split data into clusters of similar signal. For libraries with unique molecular barcodes
and/or spike-ins, the pipeline also handles PCR duplicate removal and spike-in nor-
malization, respectively.
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Chapter 3

Genomics of the transcription elongation factor Spt5

3.1 Abstract

Spt5 is a conserved transcription elongation factor important for the processivity of
the transcription complex and many transcription-related processes. To study the
requirement for Spt5 in vivo, we have applied multiple genomic assays to Schizosac-
charomyces pombe cells depleted of Spt5. Our results reveal an accumulation of
RNA Pol II over the 5′ ends of genes upon Spt5 depletion, and a progressive de-
crease in transcript abundance towards the 3′ ends of genes. This is consistent with
a model in which Spt5 depletion causes Pol II elongation defects and increases early
termination. We also unexpectedly discover that Spt5 depletion causes hundreds
of antisense transcripts to be expressed across the genome, primarily initiating from
within the first 500 base pairs of genes.

3.2 Collaborators

Ameet Shetty generated TSS-seq, MNase-seq, NET-seq,
RNA-seq, and ChIP-seq libraries
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3.3 Introduction to Spt5 and Spt5 depletion

Spt5 is a fundamental component of the transcription elongation complex, with the
distinction of being the only RNA polymerase-associated factor known to be con-
served across all three domains of life (Hartzog and Fu, 2013; Werner, 2012). In
eukaryotes, Spt5 heterodimerizes with the protein Spt4, forming a complex known as
DSIF (DRB sensitivity-inducing factor) (Hartzog et al., 1998; Hirtreiter et al., 2010;
Schwer et al., 2009; Wada et al., 1998). In metazoans, phosphorylation of DSIF
controls the release of the elongation complex from promoter-proximal pausing, a
regulatory transition state between transcription initiation and productive elongation
(Adelman and Lis, 2012).

Within the elongation complex, biochemical and structural studies place Spt4/5
near the center of the action (Ehara et al., 2019, 2017; Vos et al., 2018a,b): Spt5
directly interacts with the noncoding strand of DNA (Crickard et al., 2016;Meyer et al.,
2015), the nascent RNA (Blythe et al., 2016; Crickard et al., 2016; Meyer et al., 2015),
and the RNA Pol II clamp domain, which sits above the nucleic acid cleft (Hirtreiter
et al., 2010; Martinez-Rucobo et al., 2011; Viktorovskaya et al., 2011; Yamaguchi
et al., 1999). Binding of Spt5 to Pol II is likely to stabilize the elongation complex
and enhance its processivity (Baluapuri et al., 2019; Hirtreiter et al., 2010; Klein et al.,
2011;Martinez-Rucobo et al., 2011), consistent with both in vitro studies showing that
Spt5 reduces pausing of polymerase under nucleotide-limiting conditions (Guo et al.,
2000; Wada et al., 1998; Zhu et al., 2007), and in vivo studies showing elongation
defects upon Spt4/5mutation or depletion (Diamant et al., 2016a; Kramer et al., 2016;
Liu et al., 2012; Mason and Struhl, 2005; Morillon et al., 2003; Quan and Hartzog,
2010; Rondón et al., 2003).
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As it travels with elongating Pol II, Spt5 recruits other factors, including the Rpd3S
histone deactylase complex (Drouin et al., 2010) and mRNA 3′-end processing fac-
tors (Mayer et al., 2012; Stadelmayer et al., 2014; Yamamoto et al., 2014). The re-
cruitment of still other factors to the elongation complex by Spt5 is dependent on the
phosphorylation status of the Spt5 C-terminal region (CTR), a domain composed of
tandem repeats analogous to the RNA Pol II C-terminal domain. When unphospho-
rylated, the Spt5 CTR aids in recruitment of the mRNA capping enzyme (Doamekpor
et al., 2014, 2015; Schneider et al., 2010; Wen and Shatkin, 1999), while when phos-
phorylated, the Spt5 CTR recruits the Paf1 complex (Liu et al., 2009; Mbogning et al.,
2013; Wier et al., 2013; Zhou et al., 2009), another complex involved in transcription
elongation (Oss et al., 2017).

Despite the close relationship of Spt5 to transcription and the transcription-associated
processes described above, many studies which knocked down Spt5 in zebrafish,
mice, andHeLa cells observed onlymild changes in transcript levels across the genome
(Diamant et al., 2016b; Fitz et al., 2018; Komori et al., 2009; Krishnan et al., 2008;
Stanlie et al., 2012), a result that could potentially be explained by inefficient knock-
down of Spt5 and/or the lack of a spike-in control, without which it is impossible to
observe a global change over the entire genome (Chen et al., 2016). Consistent
with this, more recent studies incoporating spike-in controls have observed global
decreases in transcript abundances upon Spt4/5 depletion (Henriques et al., 2018;
Naguib et al., 2019).

To study the requirement for Spt5 in vivo, we use a system for conditionally de-
pleting Spt5 protein in the fission yeastSchizosaccharomyces pombe. In this system,
Spt5 is expressed using the thiamine-repressible nmt81 promoter (Basi et al., 1993),
and is tagged with an auxin-inducible degron tag (Kanke et al., 2011), such that ad-
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dition of thiamine and auxin to the media results in repression of spt5+ transcription
and specific degradation of Spt5 protein (Figure 3.1). For all experiments described
in this chapter, Spt5-depleted cells are sampled 4.5 hours after the start of depletion,
at which point the levels of Spt5 on chromatin are about 12% of non-depleted levels,
as measured by ChIP-seq of Spt5 (Figure 3.2, top panel).

spt5+

thiamine ∅Spt5
auxin

Figure 3.1: Diagram of the dual-shutoff
system used to deplete Spt5 from S.
pombe. Spt5 is expressed from a
thiamine-repressible promoter, and
tagged with an auxin-inducible degron tag
for specific degradation upon addition of
auxin.

Using this system, we assayed var-
ious aspects of transcription and chro-
matin structure across the genomes of
Spt5-depleted and non-depleted cells.
The results are presented below, with
section 3.4 and the RNA-seq part of sec-
tion 3.5 describingmy reanalyses of data
published in Shetty et al. (2017) prior to
my involvement in this project.

3.4 RNA Polymerase II in Spt5 depletion

To examine the effects of Spt5 depletion on transcription, we performed Pol II ChIP-
seq and NET-seq of Spt5-depleted and non-depleted cells. The data from the two
assays paint somewhat different pictures of the changes in Pol II status upon Spt5
depletion (Figure 3.2). ChIP-seq reports that global levels of Pol II on chromatin in
Spt5-depleted cells are roughly one-third that of non-depleted cells, with the Pol II
remaining after Spt5 depletion tending to be located towards the 5′ ends of genes.
By contrast, NET-seq reports that total elongating Pol II is not depleted to an appre-
ciable degree but is redistributed from the 3′ to the 5′ ends of genes, with a greater
5′ bias than that observed by ChIP-seq. We interpret this 5′ shift of Pol II as reflect-
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ing a transcription elongation defect upon Spt5 depletion, consistent with previously
reported elongation defects upon Spt4/5 disruption (Diamant et al., 2016a; Kramer
et al., 2016; Liu et al., 2012; Mason and Struhl, 2005; Morillon et al., 2003; Quan and
Hartzog, 2010; Rondón et al., 2003).

sense NET-seq

RNA Pol II ChIP-seq

Spt5 ChIP-seq

TSS CPS

-1
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non-depleted
depleted

Figure 3.2: Average Spt5 ChIP-seq, RNA
Pol II ChIP-seq, and senseNET-seq signal
in Spt5 non-depleted and depleted cells,
over 1989 non-overlapping coding tran-
scripts scaled from TSS to CPS, plus 0.5
kb on both ends. The solid line and shad-
ing are the median and inter-quartile range
of the mean spike-in normalized cover-
age over two replicates or one experiment
(non-depleted NET-seq), taken in non-
overlapping 20 bp bins and standardized
per gene.

To learn more about the state of
Pol II after Spt5 depletion, we also per-
formed ChIP-seq for two major post-
translational modifications of the Pol II
C-terminal domain (CTD), namely ser-
ine 5 phosphorylation and serine 2 phos-
phorylation. Looking at the relative
enrichment of these modifications over
gene bodies, we see that the CTD of
the Pol II remaining at the 5′ ends of
genes after Spt5 depletion is enriched
for phospho-serine 5 and depleted for
phospho-serine 2. This is somewhat ex-
pected due to the respective tendencies
of phospho-serine 5 and 2 to occur to-
wards the 5′ and 3′ ends of genes (Ko-
marnitsky et al., 2000). However, the
5′ enrichment of phospho-serine 5 seen
in Spt5-depleted cells is not observed
in non-depleted cells (note the unifor-
mity of relative Ser5P enrichment in non-
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Ser2P enrichment

Ser5P enrichment

non-depleted depleted

TSS 1 2 kb TSS 1 2 kb

RNA Pol II
levels

0.0

0.2

relative
enrichment

Figure 3.3: Median standardized RNA Pol II ChIP-seq signal and relative enrichment
of Pol II phospho-serine 5 and phospho-serine 2 ChIP-seq signal in Spt5-depleted
and non-depleted cells, over 1989 non-overlapping coding genes aligned by non-
depleted genic TSS. ChIP-seq coverage is spike-in normalized and input-subtracted,
and relative enrichment of Pol II modifications is a normalized log-ratio of modification
coverage over Pol II coverage.

depleted cells in Figure 3.3).
One possible explanation for the apparent discrepancy between the ChIP-seq

and NET-seq results is the difference in immunoprecipitation strategy between the
two techniques. The antibody used to pull down Pol II for ChIP-seq was 8WG16,
which recognizes the Pol II CTD. Reports of this antibody’s relative affinity for the var-
ious CTD phosphoisoforms vary widely across studies in several species (Zeitlinger
et al., 2007). It is conceivable that, for S. pombe, the 8WG16 antibody might fail to
efficiently pull down a 5′-biased phosphoisoform of Pol II that would be captured by
NET-seq, a technique that should theoretically capture all Pol II phosphoisoforms via
FLAG pulldown of the Rpb3 subunit of Pol II. If this were the case, it could explain
the relative lack of Pol II ChIP-seq signal from Spt5 non-depleted cells over the first
500 base pairs of genes (Figure 3.3). Furthermore, if the levels of this missing CTD
phosphoisoform were elevated in Spt5-depleted cells versus non-depleted cells, this
could also explain the difference in Spt5-depleted total Pol II levels on chromatin as
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observed by ChIP-seq and NET-seq.
This missing CTD phosphoisoform is not likely to be serine 5 phosphorylation, be-

cause ChIP-seq of this mark looks very much like ChIP-seq of Pol II (again, note the
uniformity of relative Ser5P enrichment in non-depleted cells in Figure 3.3). One pos-
sible candidate is serine 7 phosphorylation, a modification made early in transcrip-
tion initiation which has been shown in an in vitro human system to be a preferred
substrate for P-TEFb to carry out subsequent phosphorylation of serine 5 (Czudno-
chowski et al., 2012).

3.5 The transcriptome in Spt5 depletion

Given the transcriptional changes observed after Spt5 depletion, we performed RNA-
seq and TSS-seq to further see how the depletion affects steady-state transcript lev-
els. Changes to the levels of genic transcripts after Spt5 depletion are generally mild,
with themedian gene being expressed at roughly 68% of non-depleted levels asmea-
sured by RNA-seq with an RNA spike-in, or at 104% of non-depleted levels as mea-
sured by TSS-seq with a cell spike-in (Figure 3.4). The difference in transcript abun-
dancemeasurements between RNA-seq and TSS-seq can be explained by a change
in the distribution of RNA-seq signal over genes in Spt5 depletion: RNA-seq signal is
generally reduced over genes, except near the TSS at the very 5′ end of genes (Figure
3.5). We attribute this to defective elongation upon Spt5 depletion, which increases
transcriptional pausing, early termination, and the use of intragenic polyadenylation
sites, consistent with a previous report in budding yeast (Cui and Denis, 2003).

RNA-seq and TSS-seq also revealed the expression of many novel transcripts in
Spt5 depletion, including over 900 antisense transcripts which tend to initiate within
the first 500 base pairs downstream of the genic TSS (Figures 3.6, 3.7, 3.8). Unlike
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Figure 3.4: Scatterplot of fold-change in Spt5-depleted over non-depleted cells, com-
paring TSS-seq and RNA-seq. Each dot represents an RNA-seq measurement over
an annotated transcript paired with a TSS-seq measurement over a genic peak as-
signed to the transcript. Fold-changes are regularized fold-change estimates from
DESeq2, with size factors determined from ERCC RNA spike-in counts (RNA-seq)
or S. cerevisiae cell spike-in counts (TSS-seq).

Spt6-repressed transcripts, which are biased towards being sense strand intragenic
transcripts (Figure 2.6), most Spt5-repressed transcripts are biased towards being
antisense transcripts (Figure 3.8). In general, these Spt5-repressed antisense tran-
scripts are only a few hundred nucleotides in length (Figure 3.7), and are expressed
at a lower level than canonical genic transcripts (Figure 3.9). We also find no no-
table correlation upon Spt5 depletion between changes in antisense transcription and
changes in overlapping genic transcription. Interestingly, the most significant motif
found by de novo motif discovery upstream of Spt5-repressed antisense TSSs is a
GA-rich motif with 3-nucleotide periodicity, similar to the most significant motif found
upstream of Spt6-repressed intragenic and antisense TSSs in S. cerevisiae (Figures
3.10, 2.18).
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Figure 3.5: Average sense
RNA-seq signal in Spt5 non-
depleted and depleted cells,
over 1989 non-overlapping
coding genes scaled from
TSS to CPS. The solid line
and shading are the median
and inter-quartile range of
the mean spike-in normalized
coverage over two replicates,
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nt bins and standardized per
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Figure 3.6: Heatmaps of antisense RNA-seq signal from Spt5-depleted and non-
depleted cells, over 1989 non-overlapping coding genes aligned by non-depleted
genic TSS and sorted by annotated sense transcript length. Data are shown for each
gene up to 300 nucleotides 3′ of the CPS, indicated by the white dotted line. Values
are the mean of spike-in normalized coverage in non-overlapping 20 nucleotide bins,
averaged over two replicates. Values above the 93rd percentile are set to the 93rd
percentile for visualization.
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Figure 3.8: Bar plot of the number of
TSS-seq peaks detected as differentially
expressed in Spt5-depleted versus non-
depleted cells. The height of each bar
is proportional to the total number of
peaks in the category, including those
not found to be significantly differentially
expressed.

10
1

10
3

genic intragenic antisense intergenic

no
rm

al
iz

ed
 c

ou
nt

s

non-depleted
depleted

Figure 3.9: Violin plots of expression
level distributions for genomic classes
of TSS-seq peaks in Spt5-depleted and
non-depleted cells. Normalized counts
are the mean of spike-in size factor nor-
malized counts from four (non-depleted)
or two (depleted) replicates.
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Figure 3.10: Sequence logos ofmotifs discovered byMEME (Bailey et al., 2015) in the
window -100 to +30 bp relative to Spt5-depletion-induced antisense TSSs. For each
motif, the observed number of occurrences and the expected number of occurrences
if the input sequences were scrambled are shown.
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3.6 The chromatin landscape in Spt5 depletion
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Figure 3.11: Average MNase-seq dyad
signal from Spt5-depleted and non-
depleted cells, over 1989 non-overlapping
coding genes aligned by wild-type +1
nucleosome dyad. The solid line and
shading are the median and inter-quartile
range of the mean library-size normalized
coverage over two (non-depleted) or three
(depleted) replicates.

One hypothesis for why antisense tran-
scripts are expressed upon Spt5 de-
pletion is that changes in chromatin
structure create an environment permis-
sive for transcription initiation. To ob-
serve possible changes to chromatin, we
performed MNase-seq of Spt5-depleted
and non-depleted cells (Figure 3.11).
Because no spike-in control was in-
cluded in the experiment, we were un-
able to use the data to quantify nucleo-
some occupancy; however, the data do
indicate that nucleosomes generally be-
come less well-positioned upon Spt5 depletion (Figure 3.12), and that the severity
of these changes increases as one moves downstream from the +1 nucleosome into
gene bodies (Figure 3.11).
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Figure 3.12: Distributions of nucleosome fuzziness in Spt5-depleted and non-
depleted cells, quantified by DANPOS2 (Chen et al., 2013).

59



The data also indicate that Spt5-repressed antisense TSSs generally occur in
between the positions of nucleosome dyads, even when viewed as a group (Figure
3.13). Given the tendency of these TSSs to initiate within 500 base pairs downstream
of the genic TSS, this is consistent with these TSSs occurring between the +1 and
+2, +2 and +3, or +3 and +4 nucleosomes. Since S. pombe nucleosomes have a
preference for DNA with low GC content (Moyle-Heyrman et al. (2013); left column of
Figure 3.13) and Spt5-repressed TSSs tend to occur between nucleosome positions,
we observe an expected increase in GC content at Spt5-repressed antisense TSSs
compared to the surrounding sequence.
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Figure 3.13: Average MNase-seq dyad signal and GC content of DNA in a 21 bp
window for Spt5-depletion-induced antisense TSSs (left panels), as well as all genic
TSSs detected in non-depleted cells (right panels). Arrows indicate the direction of
transcription for each group of TSSs. The solid line and shading are the median
and inter-quartile range of the mean library-size normalized dyad coverage, over two
(non-depleted) or three (depleted) replicates, in non-overlapping 10 bp bins.

We do not observe a systematic change in MNase-seq signal around these TSSs
upon Spt5 depletion (Figure 3.13), suggesting that Spt5-repressed antisense TSSs
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probably do not occur as a result of obvious changes to surrounding nucleosomes.
However, it is possible that the increased fuzziness in nucleosome positions upon
Spt5 depletion contributes to antisense initiation by creating a chromatin environment
favorable for transcription initiation in a subset of the population. We are also unable
to rule out awholesale decrease in nucleosome occupancy after Spt5 depletion, again
owing to the lack of a spike-in control.

3.7 Discussion

In this work, we integrated multiple quantitative genomic approaches to study the
conserved transcription elongation factor Spt5. Our NET-seq and Pol II ChIP-seq
results show that, upon Spt5 depletion, Pol II becomes ’stuck’ genome-wide at the
5′ ends of genes, consistent with the role of Spt5 in stabilizing and enhancing the
processivity of the elongation complex. By TSS-seq and RNA-seq, we see that Spt5
depletion causesmild decreases in steady state RNA signal over gene bodies, but not
near the TSS. This is consistent with a model in which a decrease in elongation com-
plex processivity upon Spt5 depletion causes increased pausing of the elongation
complex, early termination, and the use of intragenic polyadenylation signals. Our
transcriptomic assays also unexpectedly revealed that Spt5 depletion leads to the
low-level expression of hundreds of antisense transcripts, primarily initiating within
the first 500 base pairs downstream of genic TSSs. To determine if the expression of
these antisense transcripts is due to changes in chromatin structure, we performed
MNase-seq on Spt5-depleted and non-depleted cells, finding that the antisense tran-
scripts initiate from regions that are already between nucleosomes in non-depleted
cells. The full mechanism of how Spt5 normally represses these transcripts remains
to be determined, perhaps involving histone modifications or factors recruited to the
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elongation complex by Spt5.

3.8 Methods

3.8.1 Yeast strain construction and growth conditions

S. pombe strain construction methods are detailed in Shetty et al. (2017). Spt5 de-
pletion was carried out as follows: Cells were grown in EMM at 30°C to a density of
approximately 1× 107 cells/ml (OD600 ∼ 0.5), at which point thiamine hydrochloride
and napthaleneacetic acid (NAA) were added to final concentrations of 100 nM and
0.5 mM, respectively. The cultures were then incubated with shaking for 4.5 hours at
30°C.

3.8.2 Sequencing library preparation
(ChIP-seq, NET-seq, RNA-seq, TSS-seq, MNase-seq)

Library preparation methods for ChIP-seq, NET-seq, and RNA-seq are detailed in
Shetty et al. (2017). TSS-seq and MNase-seq libraries were prepared as described
in Doris et al. (2018), except the experimental species was S. pombe and the spike-in
species for TSS-seq was S. cerevisiae. No spike-in was included in the MNase-seq
libraries.

3.8.3 Genome builds

The genome build used for S. pombe was ASM294v2 (Wood et al., 2002), and the
genome build used for S. cerevisiae was R64-2-1 (Engel et al., 2014).
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3.8.4 NET-seq data analysis

NET-seq data analysis was performed as described in section 2.8.9, except PCR
duplicates were removed using a random hexamer molecular barcode present in the
adapter, and spike-in normalization was performed by normalizing to the total number
of uniquely mapping, non-duplicate S. cerevisiae alignments.

3.8.5 RNA-seq data analysis

RNA-seq data analysis was performed using the Snakemake workflow for NET- and
RNA-seq analysis described in section 2.8.9, with the sequences of the ERCC92
synthetic spike-in mix (Thermo Fisher Scientific) as the spike-in genome. No PCR
duplicate removal was performed because no molecular barcode was included in the
adapter.

3.8.6 ChIP-seq data analysis

An up-to-date version of the Snakemake (Köster and Rahmann, 2012) workflow used
to demultiplex single-end ChIP-seq libraries is maintained at github.com/winston-
lab/demultiplex-single-end. At the time of writing, demultiplexing was performed us-
ing fastq-multx (Aronesty, 2013), allowing one mismatch to the barcode.

An up-to-date version of the Snakemake (Köster and Rahmann, 2012) workflow
used to process ChIP-seq libraries is maintained at github.com/winston-lab/chip-seq.
At the time of writing, 3′ quality trimming was performed using cutadapt (Martin,
2011). Reads were aligned to the combined S. pombe and S. cerevisiae genome
using Bowtie 2 (Langmead and Salzberg, 2012), and uniquely mapping alignments
were selected using SAMtools (Li et al., 2009). The median fragment size estimated
by MACS2 (Zhang et al., 2008) over all samples was used to generate coverage of
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factor protection and fragment midpoints by extending reads to the fragment size,
or by shifting reads by half the fragment size, respectively. Input and spike-in nor-
malization was carried out as described below. Quality statistics of raw, cleaned,
non-aligning, and uniquely aligning reads were assessed using FastQC (Andrews,
2010).

3.8.6.1 A note on spike-in normalization for ChIP-seq experiments with in-
put samples

While determining how to do spike-in normalization for ChIP-seq experiments with
input samples, I discovered the following error in a published spike-in normalization
method. Throughout the following explanation, I use ‘experimental’ and ‘spike-in’ to
refer to the two genomes present in the experiment.

The goal when including spike-ins in a ChIP-seq experiment is to be able to nor-
malize the experimental signal, such that the normalized signal is proportional to
the absolute abundance of the factor being immunoprecipitated. A straightforward
method to accomplish this normalization is to linearly scale the experimental signal
of a library by a normalization factor, which we will call α. To calculate α for each
library, we can use the fact that a normalized ‘spike-in signal’ should be the same for
all libraries, since the biological state of the spike-in cells is the same in all libraries.
The key to correctly determining α is defining exactly what this spike-in signal is.

Themeasurement we begin with for determination of the spike-in signal of a library
is the number of reads in the library whichmap uniquely to the spike-in genome,Rspike.
This value will vary based on two factors: the sequencing depth of the library, and the
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proportion of cells which were spike-in cells, ϕ:

Rspike ≡ the number of reads in the library mapping uniquely to the spike-in genome;

ϕ ≡ the proportion of spike-in cells in the sample.

As the derivation of α is more easily understood in terms of absolute cell numbers
rather than ϕ, we will also define the following variables:

Cexp ≡ the number of experimental cells used to prepare a library;

Cspike ≡ the number of spike-in cells used to prepare a library.

We can express the number of spike-in reads per spike-in cell by simply
taking the fraction Rspike

Cspike
. We know that the biological state of a spike-in cell is the

same regardless of which sample it belongs to, so Rspike
Cspike

is a good candidate for the
‘spike-in signal’ with which to calculate α. However, this expression does not account
for differences in ϕ between samples: We want two libraries representing the same
condition and sequenced to the same depth to have equivalent values of spike-in
signal, but this does not hold true for Rspike

Cspike
if the two libraries differed in the proportion

of spike-in added.
The expression for ‘spike-in signal’ that leads to the correct expression for α is the

number of spike-in reads per spike-in cell per experimental cell :
Rspike
Cspike

Cexp

=
RspikeCexp
Cspike

.

From here, it’s simple to calculate α by setting this value to be equal for all samples.
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Since the actual value of the spike-in signal doesn’t matter as long as it is equal for
all libraries, we can arbitrarily set it to 1 for convenience:

α
RspikeCexp
Cspike

= 1

α =
Cspike

RspikeCexp
.

Notice that only the ratio of spike-in to experimental cells is needed to calculate α,
and not the absolute number of spike-in and experimental cells. We can rewrite this
expression in terms of ϕ, the proportion of the sample that was spike-in cells:

ϕ =
Cspike

Cspike + Cexp

Cspike = ϕ (Cspike + Cexp)

Cspike (1− ϕ) = ϕCexp

Cspike
Cexp

=
ϕ

1− ϕ
α =

Cspike
RspikeCexp

α =
ϕ

Rspike (1− ϕ)
.

This form for α differs from the one presented in Orlando et al. (2014) with no deriva-
tion:

α =
ϕ

Rspike (1− ϕ)
αorlando =

ϕ

Rspike
.

Working through a few examples with both versions of α reveals that using αorlando

leads to incorrect normalization when ϕ is not equivalent for all samples.
In the first example, we will vary sequencing depth between two libraries, keeping

everything else constant. Consider a single ChIP library prep in which 20% of the
cells were spike-in cells (i.e., ϕ = 0.2). The library is then unevenly split into two
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aliquots and sequenced. Library two has four times the reads of library one.

Rspike1 = 1 Rspike2 = 4

Rexp1 = 4 Rexp2 = 16

α1 =
ϕ

Rspike1 (1− ϕ)
α2 =

ϕ

Rspike2 (1− ϕ)
αorlando1 =

ϕ

Rspike1
αorlando2 =

ϕ

Rspike2

α1 =
0.2

1 (0.8) α2 =
0.2

4 (0.8) αorlando1 =
0.2
1 αorlando2 =

0.2
4

α1 =
4
16 α2 =

1
16 αorlando1 =

4
20 αorlando2 =

1
20 .

The total levels of spike-in normalized experimental signal can be found for each li-
brary by multiplying α by Rexp, for our version of α,

signal1 = α1Rexp1 signal2 = α2Rexp2

signal1 =
4
16 (4) signal2 =

1
16 (16)

signal1 = 1 signal2 = 1

and for αorlando:

signalorlando1 = αorlando1Rexp1 signalorlando2 = αorlando2Rexp2

signalorlando1 =
4
20 (4) signalorlando2 =

1
20 (16)

signalorlando1 = 0.8 signalorlando2 = 0.8.

Only the relative abundances within normalization methods matter, so in this case
both calculations correctly normalize for library size and say that the normalized signal
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in the two libraries are the same.
Now consider two libraries from two different conditions with ϕ = 0.1. In condition

2, a global decrease in experimental signal is expected. This time, we will skip the
algebra:

Rspike1 = 1 Rspike2 = 4

Rexp1 = 9 Rexp2 = 6

α1 =
4
36 α2 =

1
36 αorlando1 =

4
40 αorlando2 =

1
40

signal1 = 1 signal2 = 1/6 signalorlando1 = 0.9 signalorlando2 = 0.15

Both methods correctly detect that experimental signal levels in library two are
1/6th that of library one.

Finally, consider two libraries from the same condition which were spiked in with
different amounts of spike-in cells. Both libraries are sequenced to the same depth.
Since the libraries are from the same condition, we expect their total experimental
signal to be the same after normalization, even though they had different amounts of
spike-in added.

ϕ1 = 0.2 ϕ2 = 0.4

Rspike1 = 2 Rspike2 = 4

Rexp1 = 8 Rexp2 = 6
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α1 =
ϕ1

Rspike1 (1− ϕ1)
α2 =

ϕ2
Rspike2 (1− ϕ2)

αorlando1 =
ϕ1

Rspike1
αorlando2 =

ϕ2
Rspike2

α1 =
0.2

2 (0.8) α2 =
0.4

4 (0.6) αorlando1 =
0.2
2 αorlando2 =

0.4
4

α1 =
3
24 α2 =

4
24 αorlando1 =

1
10 αorlando2 =

1
10

signal1 = α1Rexp1 signal2 = α2Rexp2

signal1 =
3
24 (8) signal2 =

4
24 (6)

signal1 = 1 signal2 = 1

signalorlando1 = αorlando1Rexp1 signalorlando2 = αorlando2Rexp2

signalorlando1 =
1
10 (8) signalorlando2 =

1
10 (6)

signalorlando1 = 0.8 signalorlando2 = 0.6

Here, our method correctly normalizes the two samples to the same total exper-
imental signal while using the Orlando α results in an apparent decrease in signal
in library two. This is because the Orlando α fails to account for the fact that when
you add more spike-in to a sample, you necessarily decrease the proportion of the
sample that is experimental. In most experiments with spike-ins, this isn’t an issue
because we assume that ϕ is the same for all samples. However, for ChIP-seq exper-
iments that include input samples, if we assume that the experimental and spike-in
input sample read counts are proportional to the amounts of experimental and spike-
in cells, we can plug these values in for values of ϕ to get a more reliable estimation
of experimental signal levels. In this case, it becomes important to use the correct
equation for α.
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So, putting everything together, here’s how I use a spike-in control to normalize
an IP ChIP-seq library paired with an input ChIP-seq library.

As stated above, we assume that the experimental and spike-in read counts in the
input sample are proportional to the numbers of experimental and spike-in cells used
to prepare the library (In practice, the spike-in may be added as chromatin rather than
cells. If the amount of spike-in chromatin added is calculated based on the number of
experimental and spike-in cells, as for theChIP-seq libraries described in this chapter,
the following relations should still hold.):

Rinputexp ∝ Cexp,

Rinputspike ∝ Cspike.

Therefore, we can plug these values in for C for both the input and IP libraries (using
the form of α without ϕ):

αinput =
Cinputspike

RinputspikeCinputexp
αIP =

Cinputspike
RIPspikeCinputexp

αinput ∝
Rinputspike

RinputspikeRinputexp
αIP ∝

Rinputspike
RIPspikeRinputexp

αinput ∝
1

Rinputexp

Notice howαinput reduces down to normalizing by the experimental library size, with no
dependence on the spike-in. This makes sense because the input always represents
the same state, regardless of how much spike-in is added to it. The function of the
spike-in in the input is only to allow us to estimate abundances in the corresponding
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IP library. Rewriting αIP in the form

αIP ∝ 1
RIPspike

Rinputexp
Rinputspike

shows that αIP will basically scale the experimental IP signal to the same scale as
the experimental input signal, using the spike-in as a link between the two samples.
This makes it natural to subtract the normalized input signal from the normalized IP
signal: since they are on the same scale, the resulting coverage can be interpreted
as reporting how much more IP signal was detected than was expected based on the
input.

3.8.7 TSS-seq data analysis

TSS-seq data analysis was performed as described in section 2.8.5, except the ex-
perimental genome was S. pombe and the spike-in genome was S. cerevisiae.

Reannotation of the 5′ ends of transcripts was performed as described in section
2.8.5.1, using transcript and ORF annotations from PomBase (Lock et al., 2018), and
four replicates of Spt5 non-depleted TSS-seq data.

3.8.8 MNase-seq data analysis

MNase-seq data analysis was performed as described in section 2.8.8, except the S.
pombe genome was used and no spike-in normalization was performed because no
spike-in was included in the experiment.
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Chapter 4

Studies of the functions of intragenic transcription in stress

4.1 Abstract

Intragenic transcription opens up interesting possibilities for gene regulation in wild-
type cells, and individual cases of intragenic transcription have previously been shown
to be important for different biological processes. To discover uncharacterized in-
stances of intragenic transcription, we applied high resolution genomic assays of
transcription initiation to wild-typeSaccharomyces cerevisiae under three stress con-
ditions. For the condition of oxidative stress, we show that intragenic transcripts are
generally expressed at lower levels than genic transcripts, and that many intragenic
transcripts are likely to be translated at some level. By comparing intragenic transcrip-
tion in three yeast species, we find that most examples of oxidative-stress-regulated
intragenic transcription identified inS. cerevisiae are not conserved. Finally, we show
that the expression of an oxidative-stress-induced intragenic transcript at the gene
DSK2 is needed for survival in conditions of oxidative stress.
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4.2 Collaborators

Steve Doris generated TSS-seq and ChIP-nexus libraries
Dan Spatt polyribosome fractionation, competitive growth assays,

and Northern blots
James Warner Northern blots

4.3 Functions of intragenic transcription in wild-type cells

In chapters 2 and 3, we presented examples in which mutation of certain transcription
elongation factors leads to the expression of intragenic transcripts, i.e., transcripts
initiating from within gene bodies. This implies that wild-type cells have evolved to
prevent the occurrence of spurious intragenic transcription. Despite this, our studies
and others (Cheung et al., 2008; Doris et al., 2018; Malabat et al., 2015; Pelechano
et al., 2013) consistently detect some instances of intragenic transcription in wild-type
cells, some of which could have biological functions.

One mechanism by which intragenic transcription can exert a function is by be-
ing translated into a functional polypeptide or protein. Translation of a sense-strand
intragenic transcript is likely to lead to production of an N-terminally truncated pro-
tein, which may differ from the full-length protein in stability, subcellular localization,
or function due to the absence of domains normally found in the full-length protein
(a few examples include Benanti et al. (2009); Carlson and Botstein (1982); Gam-
mie et al. (1999); McKnight et al. (2014)). N-terminally truncated proteins can even
exert dominant negative effects: In S. cerevisiae cells under DNA replication stress,
intragenic transcription of the mitotic spindle microtubule bundling gene ASE1 leads
to expression of an Ase1 protein which retains a C-terminal microtubule-binding do-
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main but lacks an N-terminal dimerization domain (McKnight et al., 2014). Evidence
suggests that by binding microtubules but not dimerizing, intragenic Ase1 antago-
nizes the function of full-length Ase1 and allows for the proper cellular response to
replicative stress.

In other cases, it may be the process of intragenic transcription that is important,
rather than theRNAproduced. As transcription occurs, co-transcriptional processses
including chromatin remodeling and histone modification also take place via the re-
cruitment of various factors to the transcription complex. These factors are often re-
cruited in a manner dependent on the stage of transcription, which results in stereo-
typic patterns of chromatin state over transcribed regions (Buratowski and Kim, 2010;
Smolle et al., 2013). For example, in S. cerevisiae, the Set1 complex responsible for
methylation of histone H3 lysine 4 (H3K4) is recruited to Pol II specifically during early
elongation, resulting in a pattern where H3K4 trimethylation (H3K4me3) is primarily
found over the 5′ ends of transcribed regions (Barski et al., 2007; Liu et al., 2005;
Pokholok et al., 2005; Soares et al., 2017). Since intragenic transcribed regions over-
lap genic transcribed regions, intragenic transcription can generate unusual patterns
of nucleosome positioning and histone modifications over a gene, which may influ-
ence expression from the genic promoter. One example of this occurs at the S. cere-
visiae asparagine catabolic gene ASP3, where sense-strand intragenic transcription
is necessary for wild-type levels of H3K4me3 over the 5′ end of the gene and full
induction of the gene upon nitrogen stress (Huang et al., 2010).

Even more possibilities for gene regulation by intragenic transcription have been
revealed by studies of antisense transcription (reviewed in Pelechano and Steinmetz
(2013)): Antisense transcription can physically block sense transcription, and anti-
sense transcripts can base pair with sense RNAs to influence isoform selection, sta-
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bility, and translation efficiency of the sense transcript. By base pairing with DNA,
sense or antisense intragenic RNAs can also form R-loop structures with the poten-
tial to inhibit transcription or regulate processes like DNA methylation.

We seek to better understand some of the many ways in which intragenic tran-
scription can function in cells by investigating uncharacterized instances of intragenic
transcription. However, this is complicated by the possibility that some cases of in-
tragenic transcription have no real function. Because the sequence of a gene is con-
strained by the requirement to encode a functional protein, a fortuitously formed in-
tragenic promoter could potentially be evolutionarily maintained in the absence of in-
tragenic function. Therefore, with the reasoning that intragenic transcription which is
regulated by an environmental perturbation is more likely to have a function, we de-
cided to identify stress-regulated intragenic transcription in wild-type S. cerevisiae.

4.4 Discovery of stress-regulated intragenic promoters by TFIIBChIP-nexus
and TSS-seq

To discover cases of stress-regulated intragenic transcription initiation, we performed
ChIP-nexus of TFIIB for wild-type yeast under conditions of oxidative stress, amino
acid stress, and nitrogen stress, alongwith controls of growth in rich YPDmediumand
defined SC medium. The genic TFIIB response to each of the stresses either corre-
lates well with the expected transcriptomic response to the stress (Figure 4.1), or is
enriched for metabolic pathways consistent with the cellular response to the stress
(Figure 4.2), confirming that TFIIB ChIP-nexus captures changes in transcription ini-
tiation and that the cells were stressed as intended. In total, we identify 140 intragenic
TFIIB peaks significantly induced at least 1.5-fold in at least one stress condition, with
some peaks being induced in more than one stress (Figures 4.3, 4.4). We also ob-
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serve a slight anti-correlation between stress-induced changes in intragenic TFIIB
signal and changes in the corresponding genic TFIIB signal (Figure 4.5).
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Figure 4.1: Scatterplots comparing change in genic TFIIB signal to change in RNA
microarray signal from Gasch et al. (2000), for oxidative and amino acid stresses.
The Pearson correlation coefficient is shown for each comparison.
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Figure 4.6: Bar plot of the number of
TSS peaks in various genomic classes
that have corresponding TFIIB peaks and
are detected as differentially expressed in
oxidative stress.

Because the greatest changes to in-
tragenic transcription initiation were de-
tected in oxidative stress, we focused
on this condition and performed TSS-
seq to determine which intragenic initi-
ation events produce stable RNAs and
in which strand orientation these events
occur. Considering only TSS peaks with
a TFIIB peak overlapping thewindowex-
tending 200 base pairs upstream of the
TSS summit, we find cases of both sense intragenic and antisense TSSs that are
differentially expressed in oxidative stress (Figure 4.6). In general, the induced in-
tragenic TSSs we detect are expressed at lower levels than induced genic TSSs:
The most abundant induced intragenic TSS is present in oxidative stress at levels
comparable to the 54th percentile of induced genic TSS abundances (Figure 4.7).
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Figure 4.7: Cumulative distributions of TSS-seq expression levels in oxidative stress,
for all genic and intragenic TSS peaks that have corresponding TFIIB peaks and are
significantly induced in oxidative stress. Error bars indicate± one standard deviation.

4.5 Polysomeenrichment of oxidative-stress-induced intragenic transcripts

Translation of a transcript requires that the transcript possess both a 5′-cap and a
poly-A tail. Since the TSS-seq protocol enriches for both of these features, this im-
plies that the oxidative-stress-dependent intragenic transcripts we detect by TSS-seq
could potentially be translated. For sense-strand intragenic transcripts, this could
generate N-terminally-truncated protein isoforms. To see how likely oxidative-stress-
dependent intragenic transcripts are to be targets for translation, we isolated polysomes
and their associated RNAs by sucrose gradient fractionation, and sequenced TSS-
seq libraries of the polysome-associatedRNA.Among oxidative-stress-inducedTSSs
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with corresponding TFIIB peaks, intragenic TSSs in oxidative stress are less enriched
in the polysome fraction compared to genic TSSs (Figure 4.8). However, half of the in-
duced intragenic TSSs are found in polysomes during oxidative stress at levels above
the 25th percentile of induced genic TSS levels in polysomes, indicating that many of
the intragenic transcripts we identify are translated at some level.
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Figure 4.8: Relative polysome enrichment in oxidative stress, for oxidative-stress-
induced genic and intragenic TSS peaks with corresponding TFIIB peaks. Error bars
indicate ± one standard error.

4.6 Functions of intragenic DSK2 expression in oxidative stress

To investigate a particular case of oxidative-stress-induced intragenic transcription
in more depth, we focused on the gene DSK2, which is associated with the intra-
genic TSS we found to be most significantly induced upon oxidative stress. The ma-
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jor DSK2 intragenic TSS is associated with a TFIIB peak that is similarly induced in
oxidative stress (Figure 4.3), and the intragenic transcript is also found in polysomes
at intermediate levels (Figure 4.8). Using a published dataset of histone modifica-
tion MNase-ChIP-seq data during a timecourse of oxidative stress (Weiner et al.,
2015), we see that induction of intragenicDSK2 expression corresponds with shifts in
transcription-associated histonemodifications over theDSK2 gene, such as a spread-
ing of H3K4me3 from the 5′ end of the gene towards the 3′ end (Figure 4.9).
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Figure 4.9: Sense TSS-seq signal (black), TFIIB ChIP-nexus protection (gray),
smoothed MNase-seq dyad signal, and relative H3K4me3 MNase-ChIP-seq en-
richment over the gene DSK2, over a timecourse of oxidative stress. MNase-seq
and MNase-ChIP-seq data are from Weiner et al. (2015). The shaded bars on the
DSK2 ORF indicate PACE-core elements on the sense (darker) or antisense (lighter)
strands, which are potential binding sites for the transcription factor Rpn4 (Shirozu
et al., 2015). The lightly shaded region of the background indicates the boundaries
of the intragenic TFIIB peak.
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Figure 4.10: Northern blot for DSK2 tran-
scripts in wild-type DSK2 and dsk2-pace
strains, in the absence or presence of ox-
idative stress induced by addition of di-
amide to the media. SNR190 is shown as
a loading control.

Dsk2 is a member of a family of par-
tially redundant ubiquitin receptors that
shuttle polyubiquitinated proteins to the
proteasome for degradation (Funakoshi
et al., 2002). Upon inspection of the
DSK2 DNA sequence, we discovered
multiple PACE-core motifs within the
DSK2 coding sequence, which are po-
tential binding sites for the proteasome
transcription factor Rpn4 (Shirozu et al., 2015). By making silent mutations to three
PACE-core elements occurring just upstream of theDSK2 intragenic TFIIB peak (the
more darkly shaded sense strand PACE-core elements in Figure 4.9, two of which are
adjacent to each other), we generated a strain named dsk2-pace in which intragenic
DSK2 expression is eliminated (Figure 4.10). Full length DSK2 transcript levels in di-
amide are not noticeably affected in the dsk2-pace mutant, suggesting that a primary
function of intragenic DSK2 transcription is not likely to be control of full-length DSK2
transcript levels. So far, our efforts to detect a possible intragenic Dsk2 protein have
been inconclusive; if intragenic Dsk2 protein is produced, it may be highly unstable.

To test whether intragenic DSK2 expression is important for the cellular response
to oxidative stress, we performed competitive growth experiments in which wild-type
DSK2 and dsk2-pace cells, distinguishable by expression of different fluorophores,
were co-cultured during a timecourse of oxidative stress induced by addition of di-
amide to themedia. In these experiments, both strains contained deletions ofRAD23,
another ubiquitin receptor that is partially redundant with DSK2 (Rao and Sastry,
2002; Saeki et al., 2002). At diamide concentrations around 0.9-1.0 mM, we ob-
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serve that dsk2-pace cells begin to grow more slowly than wild-type DSK2 cells (Fig-
ure 4.11). After two days in 1.25 mM diamide, dsk2-pace cells make up less than
2% of the co-culture, strongly suggesting that intragenic DSK2 expression does play
a role in the response to oxidative stress.
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Figure 4.11: Percentage of dsk2-pace cells over two days of competitive growth
against wild-type DSK2 cells at various concentrations of diamide. The lines and
shading are the mean ± one standard deviation of six replicates: Three in which
dsk2-pace and DSK2 cells are respectively marked by expression of mCherry and
YFP, and three in which the fluorophores are swapped between strains.

How might intragenic DSK2 expression function during oxidative stress? Like
other proteasome receptors, Dsk2 possesses an N-terminal ubiquitin-like domain
which interacts with the proteasome, and a C-terminal ubiquitin-associating domain
which binds polyubiquitin chains (Funakoshi et al., 2002). Translation of the intra-
genic DSK2 transcript is predicted to generate an intragenic protein lacking the
proteasome-interacting domain but retaining the polyubiquitin binding domain. Such
an intragenic protein could bind certain polyubiquitinated targets without delivering
them to the proteasome, in effect preventing their degradation. As noted above, we
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have so far been unable to reliably detect an intragenic Dsk2 protein; however, there
is precedent for intragenic proteins to have different stability than their corresponding
full-length forms (Benanti et al., 2009; Gammie et al., 1999).

Interestingly, one study has shown that an interaction between Dsk2 and an un-
characterized protein called Irc22 is involved in conferring salt tolerance in S. cere-

visiae (Ishii et al., 2014). This study showed that synthetic N-terminal truncations
of Dsk2 missing the first 77 or 215 amino acids bound Irc22 more strongly than full-
length Dsk2. By comparison, the intragenic Dsk2 protein predicted to be expressed
in oxidative stress would be missing the first 152 amino acids of Dsk2.

To further investigate the mode of intragenic DSK2 function, we are planning two
additional fitness competition experiments. In the first experiment, wewill test whether
intragenic DSK2 expression can complement in trans, which should help differenti-
ate whether it is intragenic DSK2 transcription, or the intragenic transcript or protein
which provides protection from oxidative stress. If intragenic DSK2 can be comple-
mented in trans, we will test whether intragenic DSK2 translation is required for pro-
tection from oxidative stress by mutation of intragenic start codons.

4.7 TSS-seq analysis of oxidative stress in Saccharomyces sensu stricto
species

If an instance of intragenic transcription like that atDSK2 is functional, then it might be
conserved between different species. To see if this is likely for the cases of oxidative-
stress-dependent intragenic transcription we observe in S. cerevisiae, we performed
TSS-seq in oxidative stress for the related Saccharomyces sensu stricto species
Saccharomyces mikatae and Saccharomyces bayanus. We then performed a mul-
tiple genome alignment of the three species, and determined which TSS peaks in

93



RPL2
6A

RPL1
4A

ASC1
RPS28

B
ZU

O
1

RPS5
RPS6B
RPL2

0B
RPP2A
PO

M
33

SCS3
G

RX2
BN

A3
PDI1
ARA1
CTL1
RRT8
ECM

15
FPR2
RDL1
TAD2
YG

R21
0C

ERV29
PU

P3
RFS1
PRE8
YER18

7W
TAD2
CCS1
ASE1
TAD2
M

M
F1

RFS1
TAD2
SEC24
H

U
T1

DBP2
DSK2
DSK2

S. bayanus

S. mikatae

S. cerevisiae

≤-5 -2.5 0 2.5 ≥5
log2 

oxidative stress

YPD

S. cerevisiae  oxidative-stress-dependent intragenic TSSs

Figure 4.12: Heatmap of fold-change upon oxidative stress, for all S. cerevisiae in-
tragenic TSSs differentially expressed in oxidative stress with corresponding TFIIB
peaks, and homologous TSSs found inS. mikatae andS. bayanus. Gray tiles indicate
that no homologous TSS was called in a species.

S. cerevisiae have corresponding TSSs called in the homologous region of the other
species. By TSS-seq, we do not find evidence of conservation for most oxidative-
stress-dependent intragenic TSSs: Out of 39 differentially expressed intragenic S.

cerevisiae TSSs with matching TFIIB peaks, we find matching TSSs for only 5 TSSs
in S. mikatae (13%) and 4 TSSs in S. bayanus (10%), compared to 42% and 38% of
differentially expressed genic TSSs (Figure 4.12). This is a low level of intragenic con-
servation when compared to previous reports of conservation of antisense transcripts
(Rhind et al., 2011; Yassour et al., 2010), but may be consistent with the reported
tendency of long noncoding RNAs to be gained and lost at a rapid rate compared to
protein-coding genes (Kutter et al., 2012).

Interestingly, the gene GRX2, whose intragenic transcript is induced upon oxida-
tive stress in all three species, is known to express two protein isoforms from different
start codons (Pedrajas et al., 2002). These two isoforms localize to different subcellu-
lar compartments, and our data suggest intragenic transcription may explain the use
of the downstream start codon to express the shorter isoform.

94



S. cerevisiae
YPD

DSK2

oxidative stress

S. mikatae

DSK2

S. bayanus

DSK2

genic TSS 0.5 1 kb

0

1

0

1

0

1

0

1

0

1

0

1

re
la

tiv
e 

se
ns

e 
T

S
S

-s
eq

 s
ig

na
l

Figure 4.13: Relative sense TSS-seq signal over the DSK2 gene in S. cerevisiae, S.
mikatae, and S. bayanus in unstressed and oxidative stress conditions. The shaded
bars on theDSK2 gene diagrams indicate PACE-core elements on the sense (darker)
or antisense (lighter) strands. The lightly shaded regions in the background indicate
the boundaries of regions homologous to the two DSK2 intragenic TSS-seq peaks
called in S. cerevisiae, for each species.

ForDSK2, the three PACE-core elements needed for intragenicDSK2 expression
inS. cerevisiae are conserved inS. mikatae but notS. bayanus (Figure 4.13). Despite
this, we do not observe the intragenic DSK2 TSS-seq peak in S. mikatae, with only a
miniscule amount of TSS-seq signal over the region homologous to the S. cerevisiae
peak. Consistent with this, when probing for DSK2 transcripts in the three species
by Northern blot, we observe extremely low expression of intragenic DSK2 RNA in S.
mikatae upon oxidative stress and no detectable intragenicDSK2 RNA in S. bayanus
(Figure 4.14).
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Figure 4.14: Northern blot for DSK2 transcripts in the yeasts S. cerevisiae, S.
mikatae, and S. bayanus, in the absence and presence of oxidative stress induced by
addition of diamide to the media. HSP12 is shown as a positive control for oxidative
stress, and SNR190 is shown as a loading control.

4.8 Discussion

In this work, we used high resolution genomic assays of transcription initiation to iden-
tify intragenic initiation regulated by three stress conditions. For the condition of oxida-
tive stress, we show that intragenic transcripts are generally expressed at lower lev-
els than genic transcripts, and many are likely to be translated at some level. Most of
the oxidative-stress-regulated transcripts we identify are not conserved among three
Saccharomyces sensu stricto species, which may suggest that intragenic promot-
ers evolve very rapidly. At least one instance of oxidative-stress-induced intragenic
transcription, at the gene DSK2, is important for yeast to survive under conditions of
oxidative stress. Our ongoing experiments are aimed at determining how intragenic
DSK2 functions to confer oxidative stress resistance. Further studies of examples
of intragenic transcription like the ones identified in this study are likely to illuminate
many ways in which intragenic transcription functions within cells.
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4.9 Methods

4.9.1 Yeast growth conditions

For oxidative stress studies in all three yeast species, yeast were grown at 30°C in
YPD rich medium to mid-log phase (OD600 ∼ 0.4), at which point diamide was added
to a final concentration of 1.5 mM. Samples were collected after 30 (S. bayanus) or 45
minutes (S. cerevisiae and S. mikatae) of diamide treatment, timepoints which were
chosen based on induction of the HSP12 gene.

For amino acid stress, S. cerevisiae strain FY3126 was grown at 30°C in SC syn-
thetic complete medium to mid-log phase (OD600 ∼ 0.4), collected by centrifugation,
washed with SD minimal medium supplemented with uracil and lysine (SD+Ura+Lys;
0.15% yeast nitrogen base, 0.5% ammonium sulfate, 2% glucose, 20 mg/L uracil,
0.004% lysine), resuspended in an equal volume of SD+Ura+Lys, and harvested af-
ter 30 minutes of starvation.

For nitrogen stress, S. cerevisiae strain FY3126 was grown at 30°C in SC to mid-
log phase (OD600 ∼ 0.4), collected by centrifugation, washed with nitrogen deficient
medium (YNB-AA-AS; 0.0025%ammoniumsulfate, 2%glucose, 20mg/L uracil, 0.004%
lysine), and resuspended in an equal volume of nitrogen deficient medium, and har-
vested after 9.5 hours of starvation.

4.9.2 Sequencing library preparation (TFIIB ChIP-nexus, TSS-seq)

TFIIBChIP-nexus libraries and all TSS-seq libraries for all species, including polysome
RNA TSS-seq libraries, were prepared as described in Doris et al. (2018). S. pombe

cells were used as a spike-in for all TSS-seq libraries except for polysome RNA TSS-
seq libraries.
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4.9.3 Genome builds

The genome build used for S. cerevisiae was R64-2-1 (Engel et al., 2014), and the
genomebuild used forS. pombe spike-inswasASM294v2 (Wood et al., 2002). ForS.
mikatae IFO 1815T and S. bayanus var. uvarum CBS 7001, ultra-scaffold sequences
from Scannell et al. (2011) were used as genomes.

4.9.4 TFIIB ChIP-nexus data analysis

TFIIB ChIP-nexus data analyses were carried out as described in section 2.8.6.

4.9.5 TSS-seq data analysis

TSS-seq data analyses were carried out as described in section 2.8.5, except using
the relevant genomes for S. mikatae and S. bayanus libraries.

For S. mikatae and S. bayanus, annotation of the 5′ ends of transcripts was per-
formed as described in section 2.8.5.1, using ORF annotation GFFs from Scannell
et al. (2011) as both transcript andORF annotations, and two replicates of unstressed
wild-type TSS-seq data. The 5′ end of an annotation was adjusted if it was above the
90th (S. mikatae) or 85th (S. bayanus) percentile of all non-zero TSS-seq signal.

4.9.6 Sucrose gradient fractionation

S. cerevisiae strain FY3126 was grown in 250 mL cultures in YPD or YPD with di-
amide as described above. Prior to harvesting, cells were treated with 0.1 mg/mL
cycloheximide and incubated for 5 minutes at 30°C. Cell pellets were resuspended
in 0.5mL ice-cold polysome lysis buffer (20mMTris-HCl pH8.0, 140mMKCl, 1.5mM
MgCl2, 1% Triton X-100, 100 µg/mL cycloheximide), and lysed by bead beating as
previously described (DeGennaro et al., 2013). Lysates containing approximately 50
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A260 absorbance units were layered on top of 10-50% (weight/volume) sucrose gradi-
ents (20 mM Tris-HCl pH 8.0, 140 mM KCl, 5 mMMgCl2, 100 µg/mL cycloheximide)
made using a Biocomp Instruments gradient master. Gradients were centrifuged for
2 hours at 36,000 rpm in an SW-41 rotor and fractioned with a Brandel gradient frac-
tionator and ISCO UA-6 detector. RNA from fractions 5-12 were pooled and used to
construct TSS-seq libraries.

4.9.7 Polysome RNA TSS-seq analysis

Polysome RNA TSS-seq libraries were processed in the same manner as total RNA
TSS-seq libraries, except no spike-in normalizationwas performedbecause no spike-
in was included. A separate Snakemake pipelinewas used to integrate data from total
RNA and polysome RNA TSS-seq. This pipeline performs three differential expres-
sion analyses using DESeq2 (Love et al., 2014): Two analyses compare polysome
RNA to total RNA in either the experimental condition (i.e., oxidative stress) or the
control condition (i.e., YPD) in order to estimate relative polysome enrichment,
log2 polysome RNA

total RNA . Polysome enrichment is a relative measure of how much more or
less polysome RNA is detected than is expected, given the amount of total RNA de-
tected. The third differential expression analysis tests whether polysome enrichment
changes between the control condition and the experimental condition, i.e., whether
the experimental perturbation caused changes to the relative association of a tran-
script with polysomes. The pipeline also finds all potential ORFs downstream of in-
tragenic TSSs.
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4.9.8 MNase-ChIP-seq data analysis

FASTQ files of the MNase-ChIP-seq data from Weiner et al. (2015) were obtained
fromSRA (SRP048526), encompassing 201 libraries for ChIP of 26 histonemodifica-
tions over 6 timepoints with inputs (i.e., MNase-seq libraries). A Snakemake pipeline
was created to process this data. Reads were cleaned by 3′ quality trimming and
adapter removal using cutadapt (Martin, 2011). Reads were aligned to the S. cere-

visiae genome using Bowtie 2 (Langmead and Salzberg, 2012), and uniquely map-
ping alignments were selected using SAMtools (Li et al., 2009). Themedian fragment
size estimated by MACS2 (Zhang et al., 2008) over all samples was used to gener-
ate coverage of factor protection and fragment midpoints, by extending reads to the
fragment size, or by shifting reads by half the fragment size, respectively. Smoothed
nucleosome dyad coverage was generated by smoothing fragment midpoint cover-
age with a Gaussian kernel of 20 bp bandwidth. Coverage was normalized to the
total number of reads uniquely mapping to the genome. Relative enrichment of his-
tone modifications was calculated as a normalized log-ratio of IP coverage over input
(MNase-seq) coverage.

4.9.9 Multiple genome alignment

A Snakemake pipeline was created which uses progressiveMauve (Darling et al.,
2010) to performmultiple genome alignment. The multiple genome alignment is used
to translate annotations such as TSSs called in one species to homologous coordi-
nates in another species, and to extract and visualize data coverage over homologous
regions in multiple species.

A separate Snakemake pipeline was created to find homologous TSSs between
the three species by looking for overlap between S. cerevisiae TSS peaks and peaks
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called in the other species which were translated into S. cerevisiae coordinates.

4.9.10 Diamide competitive fitness assays

For diamide competitive fitness assays, overnight cultures grown in YPDwere diluted
and allowed to grow to mid-log phase in YPD. YPD was then added to each culture
as needed to make the OD600 readings of all cultures equivalent. To mix competing
strains, 150 µL of each strain was mixed by pipetting in a 96-well plate. Then, 6
µL of each cell mixture was used to inoculate 600 µL of YPD or YPD+diamide in a
96-well assay block. Prior to culture growth, an initial cell count was performed by
flow cytometry of 100 µL of the culture in 100 µL of TE, using a Stratedigm S1000EX
flow cytometer. Cultures were then allowed to grow at 30°C with shaking. Every 24
hours, cell countingwas performed by flow cytometry of 5 µL of the culture in 195 µL of
TE, cultures were diluted 1:100 to a total volume of 600 µL in YPD or YPD+diamide,
and the diluted cultures were returned to 30°C with shaking. For flow cytometry,
YFP fluorescence was detected using 488 nm excitation with a 530/30 nm filter, and
mCherry fluorescence was detected using 552 nm excitation with a 615/30 nm filter.

Flow cytometry events were labeled positive for YFP if the YFP signal was at
least 500 arbitrary units, and positive for mCherry if the mCherry signal was at least
250 arbitrary units. Double positive and double negative events were excluded from
analysis.

4.9.11 Northern blotting

Northern blotting was performed as described in DeGennaro et al. (2013).
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